VI.--Second Catalogue of Mollesca recently abded to the Fauna of the New England Coast ani the addacent parts of the Atlintic, consisting mustly of Deer-Sea Species, with Notes on others previolshy recorded. By A. E. Verrila.
[Published by permission of the C. S. Fish Commission.]
Tue following paper was originally intended to form merely a brief supplement to the Catalogue published by me, in 1882 , in Vol. V. of these transactions, to include such correetions and additions as had been noticed up to date. But the discovery of a very large number of interesting additional species, many of them new, during the deepsea dredging eruises of the Fish Commission Steamer, Albatross, in 1883, made it desirable to extend the paper so as to include many of the more important of these discoveries. This has caused delay in the printing of the paper and much inereased its length, and, as I hope, its value. Many of the additions made in 1883 are from much deeper water than we had previonsly explored (1,000 to 2,900 fathoms), and consequently from a greater distance at sea; so that these cannot properly be regarded as pertaining particularly to the "New England fauna." They belong rather to the general deep-sea fanna of the western Atlantic. Others are from the deep waters of the continental slope, beneath the Gulf Stream, in 100 to 600 fathoms. As these deep-sea forms are likely to extend all along our const, at similar depths, and even to foreign waters, I have not thought it desirable to exclude from this paper any deep water species because of its having been taken even as farsonth as off Cape Hatteras, which was nearly the sontheru limit of the dredgings of the Albatross in 1883. But I have excluded the strictly sonthern shallow water forms, dredged at moderate depths off the coasts of North Carolina and Virginia, though many of them are new additions to the fauna of our coast.

There are, doubtless, to be added to our list many species of small and difficult shells, belonging to certain groups that have not yet been fully examined, or of which we have taken only imperfeet examples. These will chiefly belong to the Bullidu, Turbonilla, Odostomia, Cryptodon, and Foldia.
I am greatly indebted to the skill of Mr. J. H. Emerton for the unusually aceurate illustrations, and to the U. S. Fish Commission for the privilege of using them in this place.

Trans. Conn. Acad.. Vol. VI.

The original assorting and preservation of the deep-sea specimens taken by the Albatross was largely done by Mr. Sanderson Smith, who went on all the cruises of the Albatross, except a few of the earliest. He was assisted by several other members of the party, and especially by Ensign W. E. Sattord, U. S. N.

My work has also been particularly facilitated by the care and skill with which the final assorting, cataloguing, and labeling of the large collections have been done by my assistant, Miss K. J. Bush, who has, also, made many identifications of the described species, and given aid in other ways.

When the various lots were first examined and assorted, at Wood's Holl, last summer, during the dredging season, many of the new species, especially the largest and most striking, were recognized as forms not before observed on our coast, both by Mr. Sanderson Smith, who had special charge of the shells, and myself. For such species, in this article, "Verrill and Smith" are usually given as anthorities, but the writer is alone responsible for the deseriptions of all the species, as in his previons papers on the same subject.

Some of the previously known species, first diseovered on our coast last summer, were first identified by Mr. Smith, and others by Miss Bush, but the writer has independently examined and confirmed all such species, given in this paper.

CEPHALOPODA.

Leptoteuthis Verrill, gen nov.

Body elongated and slender, pointed behind, with a well developed terminal fin. Head relatively large, much elongated. Eyes not exsert, with simple thin lids. Mantle free dorsally, with a special dorsal and two lateral comective cartilages; the lateral ones simple, tubercle-like, corresponding to a roundish cartilage-pit on each side of the siphon. Arms slender, the ventral ones much the largest and longest. Suckers depressed, in two rows. Tentacular arms rather long, slender, with a somewhat expanded terminal club, bearing simple suckers, and with a row of small sessile suckers and rounded warts along the whole length of the imer surface of the slender portion. Gills and viscera anteriorly situated. Stomach short, with a sacenlar appendage.

This genus has, hitherto, not been distinguished from Leachiu and Loligopsis. From the typieal forms of these gromps it differs greatly in anatomical characters, as well as in external appearance. From

Tamins and Desmoteuthis it differs still more widely, and evidently has no near relationship, with them. It shows more affinity with Cheiroteuthis, in the connective cartilages and many other respects, and like that genus has large ventral arms, with a special row of color spots on them ; but there is nothing of the peculiar structure of the tentacular suckers seen in the latter. Its nearest allies appear to be Calliteuthis V. and Brechioteuthis V., from both of which it is clearly distinct generically. It may, therefore, be referred to the family Cheiroteuthicle, along with the two last-named genera.

Leptoteuthis diaphana Verrill, sp. nov.
Plate XXXiI, figure 1.
A small, elongated, very slender, translucent species, with the head very large and long, as compared to the body, its length being more than half that of the body and tail taken together, and more than three-fourths that of the body to the candal fin. Sessile arms slender, the ventral arms much larger and longer than the others, about equal in length to the head and body to the base of the tail. Tentacular arms long and slender. Caudal fin ovate, acutely pointed posteriorly.

Head elongated, cylindrical, smooth, and nearly transparent, except in the region of the eyes. The eyes are of morlerate size, not very prominent, with a broad, thin lower eyelid, but withont any distinct lachrymal sinus. Body, in front of the fin, slender anteriorly, abont equal to the head in diameter, somewhat tapering backward to the base of the candal fin, and then abruptly narrowing to a very slender candal portion, rumning along the under surface of the fin like a mid-rib and terminating in a very slender, acute tip. Anterior edge of the mantle thin, very evenly truncated ventrally and laterally, but extending on the dorsal side into a broad, angnlar, obtusely pointed lobe. Candal fin relatively large, elongated, ovate, decidedly broadest in the middle, narrowing distinctly anteriorly, with the anterior lobes small, rounded, and projecting only slightly forward beyond the insertion; posteriorly the fin narrows rapidly to a long, slender, acuminate tip. Siphon well developed, with the terminal portion elongated and free for some distance, strongly recurved in our specimen. Comnective cartilages on the lateral base of the siphon small, elliptical, somewhat ear-shaped, with a continnons, raised rim, and with two small interior lobes, one of which is ventral and the other posterior, learing between them a small, deep sinus, directed downward and backward. The corresponding cartilages on the inner surface of the mantle are small prominent, somewhat triquetral tubercles,
with the corners roundell and the ohuse tip a little prominent and directed posteriorly.

The arms increase in size and length from the dorsal to the ventral pairs. The dorsal arms are very slender and short, in length not half as long as the head ; the second and third pairs are similar in form, but increase regularly in size and length, the third pair not being equal to the length of the head; the ventral arms are, on the contrary, very much larger and longer than the third pair, their length being nearly three times as great; the tentacnlar arms are very slender and considerably exceed the ventral arms in length when extended; the club is distinctly larger than the rest of the arm, a little tlattened and expanded in a narrow lanceolate form, and covered by regular, minute suckers, arranged in about four rows along the middle portion. The slender portion of the arms bears a row of small sessile suckers and tubercles along nearly its whole length; these suckers are usually elliptical in form where the arm is extended, but circular when contracted; they are rather larger than the suckers of the club, but are only a little elcrated, and are so mmerous that the intervals between them are often not greater than their own diameter, but when the arms are fully extended these intervals are increased. On the ventral arms the suckers are small, oblique cups, constricted at the aperture and attached hy very slender pedicels; they are arranged rather distantly in two alternating rows, which occupy only a narrow median band on the inner face of the arms; just exterior to the outer suckers, and alternating with them, there is a row of small, rounded, slightly raised, redilish brown warts, in diameter equal to or somewhat exceeding the suckers. On the other irms the suckers are relatively more mmerous, and more closely arranged in two regular rows; on these arms they are about the same in size as on the rentral ones, but are flatter, less obliquely attached, and have the aperture less constricted and not so one-sided. On the inner surface of these arms there are two rows of brown spots, altemating with the suckers. Color of the body and head, in alcohol, pale, translucent bluish white, spotted along the middle of the dorsal surface with rather large chromatophores, which are not very unmerous, and with fewer scattered ones on the sides and ventral surface. Caudal fin yellowish white, opaque (owing to the effect of the alcohol). with a median band of chromatophores along the dorsal surface and with very few beneath. On the dorsal side of the heal, between the eyes, the chromatophores are more numerons than elsewhere ; a row of similar rhromatophores extembsalong the outer surface of each arm. "Ten-
tacular arms and three upper pairs of sessile arms yellowish white and opaque. Ventral arms bluish white and translucent, like the head and body.

Length from tip of tail to base of dorsal arms, 74^{mm}; to anterior edge of mantle, $50^{\text {min }}$; to center of eyes, $64^{\text {mm }}$; diameter of head across eyes, 8^{mm}; back of eyes, 7^{mm}; diameter of body, $5-7^{\mathrm{mm}}$; length of canda! fin, $23^{m m}$; its breadth in the middle, 13^{mm}; breadth across anterior lobes, $6^{\text {mm }}$; length of dorsal arms, 11^{mm}; of second pair, 14^{mm}; of third pair, 18^{mm}; of ventral arms, 42^{mm}; of tentacular arms, 60^{mm}; diameter of dorsal arms at lase, about 1^{mm}; of third pair, 2^{mm}; of ventral arms, 3^{mm}; diameter of larger suckers, about $\cdot 3^{\mathrm{mm}}$.

The gills and viscera are situated far forward. The gills are short, broad, blunt, with many crowded lamellæ. The stomach bas a short, thick, tapering, saccular appendage. The liver is relatively large, short, rounded. Rectum slender, with two well-developed, spatulate anal papille. Branchial auricles well-dereloped, oblong. The pen is very thin and delicate.

Station 2037, in 1731 fathoms, N. latitude $38^{\circ} 53^{\prime}$, W. longitude $69^{\circ} 23^{\prime} 30^{\prime \prime}$. No. 38,242. Steamer Albatross, 1883.

The only described species which resembles this is Lolifopsis vermicolaris Rup., but the latter, if the figures can be relied upon, differs in its proportions. It has a still longer and more slender head, while its candal fin is much larger and has a distinctly cordate outline, broadest across the anterior lobes, which are much larger and broadly rounded. It is, however, evidently congeneric with our species, and should be called Leptotenthis vermicolaris.

Our specimen has the reproductive organs but little developed, and is, therefore, probably immature.

Abralia megalops Verrill.
Amer. Journ. Sci., vol. xxir, p. 364, 1882 ; Bulletin Mus. Comp. Zool., vol. xi, p. 105, pl. 3, fig. 4, 1883 (rlescription of young).

Plate XXTIII, figere 2.

The following description is from the type-specimen, in alcohol.
Small, eyes large; candal fin, about two-thirds as long as the mantle, and much broader than long, transversely elliptical; $2 d$ and 3d pairs of arms equal; dorsal a little shorter; ventrals shortest. Sessile arms with two rows of hooks, which are replaced by small suckers on the distal third; tentacular clubs with two altemating rows of hooks, and with marginal snckers distally, on each side,
alternating with the median hooks, and with proximal and terminal gromps of smaller suckers. Color pale, with mumerons small dark brown chromatophores above, larger and more crowded on the head and on the bases of the arms; lower side with several larger, romed, symmetrically placed, purplish brown spots, and with minute ones between them.

Length of mantle, $15^{\text {mm }}$; diameter of borly, 7^{mm}; length of fin, $11^{\text {min }}$; breadth across fins, $18^{\text {mm }}$; breadth of head, $7^{\text {mm }}$; diameter of eye, 4.5 mm ; length of dorsal arms, 13^{mm}; length of second pair, 14^{mm}; of third pair, 14^{mm}; of tentacular arms, 25^{mm}; of ventral arms, 10^{mm}. Probably this speeimen is immature.

The specimen described from the Blake collection is still younger, but the general figure referred to is from the original specimen, described above.

Off Martha's Vineyard, station 1137, in 173 fathoms, Fish lIawk, 1882. Off Barbados, station 294, in 137 fathoms, Blake Exped., 1878-9.

Eledonella Verrill, gen. nov.

General appearance similar to that of certain small species of ()ctomus and Eledone. Body oblong-ovate, soft and saccular, without fins. Mantle extending forward as far as the eyes. Gill-opening very wide, extending upward on the sides as far as the dorsal margin of the eyes, which may be partially concealed by the edge of the mantle. Arms slender, the upper ones shortest, the third pair largest. Snekers in a single row. Third arm of the right side hectocotylized by having the terminal half thickened and somewhat shortened, and bearing on its distal half a few very large ureeolate suckers, very much larger than any of the others, and quite different in form. Interbrachial membrane short. Eyes well developed, nearly covered by the skin; a mens-pore close to the anterior ventral border of the orbit. Siphon moderately developed, free only near the tip ; posteriorly the basal part of the siphon extends into two commissual muscular bands on each side; the ventral one runs far back, while the lateral curves nuward to join the mantle. There is a large median ventral commissure joining the mantle to the visceral mass ; thens the gill-chamber is divided into right and left compartments, each of which is sub-divided into a superior and inferior portion. No special eartilages conld be seen on the mantle, nor on the siphon. Reproductive organs large, highly colored with large orange chromatophores.

The principal character in which this genns differs from Eledone is the peculiar mode of hectocotylization of the third arm in the male. Eledone agrees essentially with Octopus in this respect.

Eledonella pygmæa Verrill, sp. nov.
Plate XXXII, figure 2.
Body smooth, oblong-ovate, somewhat depressed, bluntly ronnded at the posterior end, narrowed a little anteriorly, back of the eyes. Head rather small, equal in width to the anterior part of the body. Mantle-edge thin, extending far forward, its lateral edge reaching as far as the pupil of the eye, and united to the dorsal integument of the head on a level with the upper surface of the eye. Eyes of modcrate size, convex, but not very prominent. Arms rather short, except the third pair, which is much larger than the others; the dorsal pair is considerably smaller and whorter than the others ; the second pair is a little longer and united to the first by a small interbrachial membrane, ocenpying about its basal third ; the third arm on the left side, is about twice as long as the dorsal ones and much stonter, tapering to a slender, acute tip, and united to the second by the short interbrachial membrane, but with only a rudimentary membrane between it and the ventral arm ; the ventral arms are much smaller and shorter, about equal in length to the second pair, and have no interbrachial web between them. The hectocotylized arm (fig. 2) is somewhat stonter than its mate, but decidedly shorter, though longer than any of the other arms; beyond its middle it bears four large um-shaped suckers, quite different in size and form from those on the basal half; the first of these special suckers is decidedly the largest, the others decrease in size to the terminal one, which is quite small. These specialized suckers have a broad, swollen, and nearly round basal portion, in brealth exceeding the width of the arm, while toward the summit there is a distinct constriction, and the cup itself expands somewhat, but is decidedly narrower than the basal portion of the sucker ; the border of the aperture is somewhat contracted and four-lobed. The basal suckers on this arm and all of those on the other arms are arranged in a single row. They are of moderate size, rather elevated, with the basal portion sessile and a little expanded. The number on each arm is from ten to twelve, besides a few minute ones at the tip; on the basal half of the hectocotylized arm there are four simple ones. Color, a pale blnish white, spotted with rather large purple-brown chromatophores, which are equally numerons above and below, and arranged somewhat in rows on the onter surfaces of the arms.

Length of the body and head, to base of arm, $27^{m m}$; length of body to edge of mantle above, $20^{m m}$; breadth across body, $14^{\text {mm }}$; breadth of head across eyes, 11^{mm}; diameter of eye-ball, 4.5^{mm}; length of dorsal arms, 7^{mm}; length of second pair of arms, 9^{mm}; length of third pair, 14^{mm}; length of ventral arms, $\tau \cdot 5^{\mathrm{mm}}$; length of hectocotylized arm, 11^{mm}; height of largest specialized suckers, 3^{mm}; diameter, $3^{\text {mmi. }}$.

Station 2099, N. latitude $37^{\circ} 12^{\prime} 20^{\prime \prime}$, W. longitude $69^{\circ} 39^{\prime}$, in 2949 fathoms, (No. 35,268*). Steamer Albatross, 1883.

GASTROPODA.

Pleurotomella Verrill.

Amer. Jour. Science, v, p. 15, 1882 ; Catal. Marine Mollusca, these Trans., v, p. $453,1882$.
This genus was originally proposed for P. Packardii, first taken in deep water in the Gulf of Maine. This species is remarkable for the delicacy and beanty of its sculpture and the great depth of its subsutnral sinus. The subsequent discovery of numerons other related species inhabiting the deep waters, off our coast and in other regions, has rendered it necessary to enlarge the limits of the genus and to modify its characters.

As at present muderstood, this genus is intended to include those species which have a rather broad and very distinct subsutural band, crossed by excurved lines of growth eorresponding to the form of the posterior simus of the lip, which is situated a little below the suture and is always pretty well-developed, but is sometimes broad and shallow, and at other times narrower and very deep. The outer lip is always thin and sharp, withont any appearance of a varix, nor is there any deposit of callus on the body-whorl, in front of the aperture. The canal is well developed, generally constricted at the base and somewhat elongated, and usually but slightly curved. In a few of the species, doubtfully referred to the genns, it is short and wide. The columella-margin is more or less simons. The nuclens differs in sculpture, and usually in color, from the rest of the whorls, and is generally minutely cancellated by fine raised lines rumning obliquely in opposite directions. The remaining whorls are elegantly senlptured by longitudinal ribs and revolving einguli, and usually have a distinct shoulder or earina, which is frequently nodulous, below the

[^0]subsutural band. The animal is destitnte of an operculum, and, in all the species hitherto examined, is withont eyes. The dentition consists of rather strong uncini, usnally with a barbed tip and broad base.

This genus, therefore, resembles rery closely the shallow-water genus, Defirancia, to which many of the described species have been hitherto referred; but in Defiancia the outer lip is thickened, or has a distinct varix, and there is nsually a deposit of callus on the bodywhorl, especially posteriorly, opposite the sinus, while the animal, in the typical species at least, has well developed eyes.

Pleurotomella Bairdii Verrill and Smith, sp. nov.
Plate NXXI, figere 1.
Shell large, rather stout, fusiform, with an elevated, acute, turreted spire and eight or nine obtnsely shoulderen, angnlar whorls. The last whorl is large and somewhat inflated, with a broad, flattened or slightly concare, sloping subsutural band, which is covered with distinct, strongly receding lines of growth and with more or less evident, raised, spiral cinguli and grooves. Below the smbsutural band the whorls are obtusely angulated, but without a distinct carina. Commencing at the shoulder and extending a short distance below it are numerous oblique, not very elevated, longitudinal ribs, which fade out before reaching the middle of the whorls. The whole surface of the whorls, incluling the rihs, is covered with conspicuous, raised, spiral cinguli, between which there are two or three smaller ones, separated by deep concave grooves of about the same breadth; the whole surface is covered by distinct, raised lines of growth. The aperture is oblong-ovate, rather large ; the columella is nearly straight, somewhat prolonged, its inner edge forming a slight sigmoid curve; the canal is short, broad, narrowed at the tip and not recurved; the outer. lip is sharp and thin; the posterior sinus is broad and rather deep, with regularly romded margins, corresponding to the lines on the sub-sutural band; below the shoulder the lip projects considerably forward and then is somewhat flattened and recedes gradually to the hase of the short and broad canal. The nuclear whorls are very small and generally eroded so far as to appear smooth.

The shell is white or grayish white, without any distinct epidermis; aperture clear white. The animal is destitute of operculum and eyes.

In the number of specimens examined there is considerable variation in the ratio of length and breadth, depending largely on the

[^1]sex; among the several specimens of which the sex was determined the females have the body-whorl slightly more swollen than the males.

Length of one of the largest female specimens, $55^{\text {min }}$; breadth, 26^{mm}; length of body-whorl to tip of eanal, 40^{mm}; breadth of bodywhorl, 22^{mm}; length of spire, 26^{mm}; length of aperture, 27^{mm}; its breadth, 12^{mm}.

It was taken at the following stations by the Albatross in 1883:

This species is elosely allied to P. Agassizii. It is a larger and stouter shell, with the whorls more angulated at the shoulder, and has a broader and more angular aperture. The senlpture differs considerably in details, and the columella is destitute of the pink or pale orange tint usually present in P. Agassizii.

Pleurotomella Benedicti Verrill and Smith, sp. nov.

$$
\text { Plate XXXI, figures } 2,2 \boldsymbol{} \text {. }
$$

Shell fusiform, moderately stout, with a high, regularly tapered spire, and very convex, shouldered whorls, whieh have strong, oblique, transverse ribs rendered nodulons by well developed, raised eingnli.

Whorls six, below the chestnut-colored muelens. The suture is deep, not very oblique. The subsutural band is rather broad, concave, nearly smooth, contrasting strongly with the rest of the whorls; its sculpture consists only of the deeply concave lines of growth, parallel with the notch in the lip. Below the subsutural band the whorls are abruptly swollen, forming a romded shondder. The transserse ribs, commeneing at the shoulder, are prominently raised, rather obiique, and extend entirely aeross the whorls of the spire, becoming smaller next the suture; on the last whorl they extend to the base of the canal; they are obtuse at summit and separated by wider, deeply coneave interspaces ; on the last whorls there are about sixteen ribs. Both the ribs and interspaces are crossed by well marked, somewhat mequal, raised, revolving lines, separated by narrow grooves; these, in passing over the ribs, produce small, somewhat conical, mequal nodules, which give a somewhat rough appearance to the surface of
the shell. One of the spiral lines just above the suture and one or two of those at the shonlder are stronger than the rest. Between the ribs the revolving lines are ronghened by fine lines of growth.

The four nuclear whorls (fig. $2(\iota$) are evenly rounded and in strong contrast with those that follow them. The first one is very minute, forming a very acute apex; the surface is finely cancellated by two sets of lines rumning obliquely in opposite directions. The aperture is elongated and rather broad in the middle; the outer lip has a deep and broad posterior sims, below which it projects strongly forward and is regnlarly arched to the base of the canal ; the canal is narrow, nearly straight, slightly prolonged ; the colmmella is straight and tapered, with its inner erlge forming a slightly sinnons curve; the inner lip is smooth and polished, with a thin coat of enamel which extends somewhat forward in a regular curve on the body-whorl. The color is white with a pale grayish tinge, with the exception of the nuclear whorls, which are deep chestnut-brown.

Length, 17^{mm}; greatest breadth, $8^{\text {mm }}$; height of spire, $9 \cdot 5^{\text {mro }}$; length of aperture, 8^{mm}; breadth, $3 \cdot 5^{\mathrm{mm}}$.

Station 2084, N. latitude $40^{\circ} 16^{\prime} 50^{\prime \prime}$, W. longitude $67^{\circ} 05^{\prime} 15^{\prime \prime \prime}$, 1290 fathoms. Albatross, 1883. (No. 38,087).

This fine species has been dedicated to Mr. James E. Benedict, of the U. S. Fish Commission, Naturalist, in charge of the Zoological department on the Albatross.

Pleurotomella Sandersoni Verrill, sp. nov.

Plate XXXi, figures 3, $3 a$.

Shell small, delicate, fusiform, with an elevated and very acute spire and a slightly elongated, straight canal. Whorls angulated and turreted, sculptured with ribs and revolving lines, which form rows of small, sharp nodules at their intersection around the periphery, and especially at the shoulder. Whorls about four, below the muclens, which is unusually elongated and composed of four pale chestunt-colored whorls, which are finely and regularly cancellated. The apical whorl is very minute and prominent, giving the spire a very acute tip. The nuclear whorls increase rapidly and regularly in size, and are regularly rounded. The sculpture passes somewhat gradually into that of the next lower whorl, which is distinctly ribbed and carinater, with a single row of sharp tubercles around the middle. The lower whorls of the spire have the shoulder at about the middle, and below it two or three raised cin-
guli, which form ats many rows of small acute nodules in erossing the ribs; these are similar to those on the carina of the shoulder, but usually a little smaller. There is commonly another row of sinaller tubercles of the same kind just above the shoulder. On the last whorl there are from fifteen to eighteen cinguli, which are unequal in size and decrease in prominence from the carima to the base of the canal; most of these form small, sharp nodules in crossing the ribs. The ribs are a little prominent, rather oblique, sharp at summit, and separated by concare interspaces of somewhat greater width; on the upper whorls they run from just above the shoulder forward to the suture: on the body-whorl they curve strongly forward in the middle and then recede and disappear before reaching the base of the canal. The subsutural band is rery wide, strongly sloping, and somewhat concave just above the shoulder ; it is covered with numerons, rather conspicuous, thin, raised riblets, which are strongly excurved in the middle and bend forward before reaching the suture. Two or sometimes three cingnli exist on the subsutural band; the uppermost of these is just below the suture and forms there a small carina, above which the suture is distinctly channeled. The surface between the ribs is everywhere covered by fine, distinct, flexuons lines of growth. The aperture is long-ovate, rather narrow, angulated externally; the onter lip is thin and sharp, with a broad, rounded posterior sinus, just above the shoulder and a little removed from the suture; below the shoulder the lip arches forward in a broal curve, and becomes incurved at the hase of the canal, which is rather contracted and a little bent to the right and slightly everted at tip. Columella short and nearly straight, its inner edge forming a strong sigmoid curvature. Epidermis indistinct. Color white, with the exception of the light yellowish brown uncleus.

Length of one of the larger specimens, 6.5^{mm}; breadth, 3.5^{mm}; length of body-whorl and canal, 4^{mm}; length of aperture, 3^{mm}; its breadth, $1 \cdot 25^{\mathrm{mm}}$.

Station 2038, N. latitude $38^{\circ} 30^{\prime} 30^{\prime \prime}$, WV. longitude $69^{\circ} 08^{\prime} 25^{\prime \prime}$, in 2033 fathoms, living, (No. 34,841); Station 2043, N. latitude $39^{\circ} 49^{\prime}$, W. longitude $68^{\circ} 28^{\prime} 30^{\prime \prime}$, in 1467 fathoms, (No. 34,851); and station 2084, N. latitude $40^{\circ} 16^{\prime} 50^{\prime \prime}$, W. longitule $67^{\circ} 05^{\prime} 15^{\prime \prime}$, in 1290 fathoms, living, (No. $38,3: 5$). Albatross, 1883. The best specimens occurred at the last named station, in 1290 fathoms.

This species bears considerable resemblance to several others of the same group, but difters very decidedly from all the rest in the character of the melens, which is remarkable for its relatively large
size and the number of whorls of which it-is composed, and for the sharpness of the tip, due to the prominence and minuteness of the apical whorl. The shell is more slender than most of the related forms and has a rougher appearance, owing to the sharp nodules along the spiral lines. In the latter character it most resembles P. Benedicti, but the latter is a much larger and stonter shell, with a coarser sculpture. P. Suffordi is a very much shorter and thicker shell, with mach stronger sculpture and a very different nucleus.

This elegant species is dedicated to Mr. Sanderson Smith, for many years a member of the Fish Commission parties, and associated with the writer in the malacological work.

Pleurotomella Saffordi Verrill and Smith, sp. nov.

$$
\text { Plate XXXI, figures 4, } 4 a \text {. }
$$

Shell small, thin, delicate, rather short, with very convex and strongly ribhed whorls, a wide, concave subsutural band, and a narrow elongated canal. Whorls five or more, below the nucleus, which consists of three small, chestmut-brown whorls, enlarging gradually, and having the surface covered with minute reticulated scnlpture; its apex is slightly obtuse, owing to the first whorl being rounded and depressed, and but little smaller than the second. The whorls below the mucleus enlarge rapidly, the hody-whorl being much larger than the others. The subsntural band is relatively wide, distinctly concave, and covered with fine, close, strongly receding, curved lines corresponding to the form of the posterior sinus of the lip; and not crossed by spiral sculpture. Below this band the whorls are suddenly swollen so as to produce a prominent rounded shoulder; the convex part of the whorl is crossed by twelve to fourteen prominent, rather acnte, simous ribs, which are most prominent on the shoulder, where they bend obliquely forward. The concave interspaces are wider than the ribs. The whole surface below the subsutural band is covered by numerous fine, raised, spiral lines or cinguli of mequal size, and not closely crowded; these in crossing the ribs form minute, obtuse notules. The ribs disappear at the base of the canal, but the spiral lines contime to its tip. The aperture is broad-ovate, somewhat angulated at the shoulder of the whorl and at the base of the columella. The posterior simus is broad and moderately deep. The canal is rather elongated, narrow, and somewhat sinuous. The colnmella is nearly straight for a part of its length, and then its edge becomes strongly, spirally curved where it borders the canal. Shell
white and translucent, with the exception of the nucleus. Epidermis not apparent. Operculnm wanting.

Length of one of the largest examples, $10^{\text {min }}$; greatesi breadth, $5^{\text {num }}$; length of body-whorl to tip of canal, $7^{\text {min }}$; length of aperture, 5^{mm}; its breadth, $2 \cdot 5^{\mathrm{mm}}$.

Stations 2041, 2042, 2043, 2076, 2084, and 2115, in 906 to 1608 fathoms. Albatross, 1883. The greatest mmber of living specimens occurred at station $2084, \mathrm{~N}$. latitude $40^{\circ} 16^{\prime} 50^{\prime \prime}$, W. longitude 67° $05^{\prime} 15^{\prime \prime}$, in 1290 fathoms, (No. 38,308).

This is a small and very elegant species, remarkable for the convexity of its whorls, and its very broad subsutural bami. The canal is narrower and more constricted at its base than is nsual in this genus. The seulpture is strongly marked, but does not give the rongh appearance seen in P. Benedicti, which is also a longer and more fusiform shell, but has considerable resemblance in its sculpture. P. Diomerlece is also a more elongated shell, with less eonvex whorls, and its subsutural band is narrower and crossed by conspicnous prolongations of the ribs. It bears some resemblanee to P. formosa (Defiancia formosa Jeff.), but that has less prominent ribs, lesis conspicnonsly shouldered whorls, and a differently shaped aperture.

This species is named in honor of W. E. Safford, Ensign U. S. N., who was a member of the Fish Commission party, in 1883.

Pleurotomella Diomedeæ Verrill and Smith, sp. nov.

Plate XXXI, figures $5,5 a$.

Shell white, delicate, rather small, fusiform, with an acute spire and distinctly angulated whorls, crossed by prominent flexnons ribs, which extend upward to the suture, and with rather coarse revolving lines, usually absent on the wide subsutural band, which is concave at a little distance from the suture. The posterior sinus is rather broad and decp, a little removed from the suture. Whorls four or fixe below the muclear whorls, of which there are four. The body-whorl is large and moderately convex, strongly angnlated at the shoulder, which is prominent and bears a series of small romded nodules at the angle of the ribs; above the shonlder the whorls are deeidedly concave in line with the posterior sims, but have a marrow, convex band just below the suture. The subsutural band is crossed by thin lut strongly raised continnations of the ribs, whieh recede in a strong eurvature in crossing the concave portion, but advance abruptly and rise into small prominent, narrow or compressed tubereles in erossing the eonvex portion, close to the suture; at the shonlder the ribs be
come stouter and more prominent, each bearing a small rounded or angular nodnle; below the shoulder the ribs are moderately stont, usually rounded or obtuse at summit, but sometimes, especially on the upper whorls, angular or suhacute. They are slightly oblique or flexuous and cross the entire breadth of the upper whorls, but fade out about the middle of the last whorl. There are abont twenty of these ribs on the last whorl. Strongly marked cinguli cover the whorls below the shoulder, these become coarser and more raised on the anterior part of the last whorl and on the canal, where they are separated by wider concave interspaces, and roughened by the distinct lines of growth crossing them; on the middle of the convexity of the whorl they are less conspicnous and but slightly raised, and not very close together; they are more conspicnons in the intervals between the ribs, the summit of the ribs being but slightly roughened by their crossing, except close to the shoulder, where they often form minute nodules; they are usually wanting on the subsutural band, but are sometimes faintly marked on that portion. Distinct lines of growth, parallel with the lip, cover the surface of the shell and are most distinct on the subsutural band, between the ribs. The aperture is narrow-ovate, angulated posteriorly. The outer lip is thin, projecting forward in the middle in a strong, regular curve, but greatly receding toward the shoulder. The sinus is rather deep and wide, sitnated just above the angle of the shoulder and separated from the suture by the convex portion of the subsutural band. The columella is sinnons; the canal is a little prolonged, rather narrow, and straight.

The four nuclear whorls are yellowish or pale horn-color, and form a very acute apex when perfect. The first is very minute and somewhat upturned and prominent ; the second is also minute; the third and fourth increase rapidly; the first three, in our most perfect specimens, are smooth and somewhat glossy; the fourth is crossed by numerous, thin, delicate, raised longitudinal lines, which are a little oblique and recurved in the middle, but not crossed by another set, as seen in many other species. Color translucent white, sometimes faintly tinged with gray or pink, surface glossy. No epidermis. Operculnm wanting.

One of the largest specimens is 11^{mm} long; breadth, 4.5^{mm}; length of body-whorl and canal, $7 \cdot 5^{\mathrm{mm}}$; of aperture, 6^{mm}; its breadth, 2^{mm}. Other examples are more slender, with a narrower aperture.

Stations 2037, 2038, 2041, 2042, 2043, 2084, and 2096, in 1290 to 2033 fathoms. It occurred in the greatest numbers, living, at station

2038 , N. latitude $38^{\circ} 30^{\prime} 30^{\prime \prime}$, W. longiturle $69^{\circ} 08^{\prime} 25^{\prime \prime}$, in 2033 fathoms (No. 34,82ヶ) ; at station 2041, N. latitude $39^{\circ} 22^{\prime} 50^{\prime \prime}$, W. longitude $68^{\circ} 25^{\prime}$, in 1608 fathoms, (No. 34,828) ; and station 2096 , N. latitude $39^{\circ} 22^{\prime} 20^{\prime \prime}$, W. longitude $70^{\prime \prime} 52^{\prime} 20^{\prime \prime}$, in 1451 fathoms, (No. 37,790.) Albatross, 1883.

Named in commemoration of the steamer Albatross, (Diomedeu).

Pleurotomella Emertoni Verrill and Smith, sp. nov.
Plate XXXI, figure 6.
Shell moderately large, stont, avate, with the body-whorl very large in proportion to the rest of the shell, and with some of the upper whorls ribbed and nodulous, while the two lower whorls have only spiral lines and lines of growth. Whorls about eight, three of which form a chestunt-colored uncleus; about three whorls below the uucleus are covered with prominent, longitndinal ribs, which form a well marked shoulder and are crossed by several conspicnous, revolving cinguli and grooves, which render them deeidedly nodulons. The subsutural band is broad, strongly concare, oceupying nearly or quite half the breadth of the upper whorls, and crossed by strongly receding, raised lines, parallel with the lines of growth of the sinns, but without spiral lines. Body-whorl large and swollen, covered throughout with very evident lines of growth, which are crossed, except on the subsutural band, by conspicuons, revolving cinguli, which are separated by spaces considerably exceeding their own breadth. Aperture oblong-ovate, scarcely narrowed at the broad, short, open canal, and with a vers wide and rather deep posterior siuns. The outer lip is thin and projects well forward beyond the sinus in a broadly rounded curve. The columella is straight, with a sinuons inuer margin; the imer lip is marked by a narrow and thin enamel, which extends but little forward in a simons ontline. The color is yellowish white under a thin, smooth, glossy, yellowish green epidermis.

Length, 22^{mm}; greatest breadth, 11^{mm}; leugth of aperture, 14^{mm}; its breadth, 5^{mm}.

Station 2097 , N. latitude $37^{\circ} 56^{\prime} 20^{\prime \prime}$, W. longitude $70^{\circ} 57^{\prime} 30^{\prime \prime}$, in 1917 fathoms (No. 35,232). Albatross, 1883.

This species very elosely resembles the following, in size and form. It differs in having a wider canal, which is less differentiated from the aperture, and in having the upper whorls strongly ribbed and nodulons. They may possibly prove to be varieties of one species.

Pleurotomella Bruneri Verrill and Smith, sp. nor.
Plate MXXI, figures $7,7 \omega$.
Shell stout-fusiform, with a rather short, regularly tapered spire, a broad and deep posterior sims, and a very short and wide canal.

Whorls seven, morlerately consex, with a wide, concave subsutural band, which is covered with regular, strongly receding, raised lines, but destitute of spiral sculpture. The shoulder is rather prominent where the concave bind joins the convexity of the wholl the rest of the surface is covered with conspicnons, raiset, obtuse, mequal revolving cinguli, separated by deep interspaces of nearly the same breadth, on the spire; on the anterior part of the body-whorl the cinguli become broader and flater, and separated by narrower grooves, which are covered by momerons rather close, raised, longitudinal lines, or lines of growth, which are less conspicuons where they cross the cinguli ; this arrangement produces a finely cancellated structure, in which the spiral lines are muth more distinct than the others. Aperture narrow-orate, continning backward in a broad and deep sinns next the bouly-whorl. The outer lip is thin and sharp, and projects obliquely forward in a broad curve. The canal is scarcely differentiated from the rest of the aperture; it is short and rather broad, and nearly straight. The colnmella is straight, with a simuons inner margin. The inner lip extends forward on the body-whorl in a broad, regular curve, defined by a thin layer of enamel. Operculum apparently wanting. The nuclear whorls are eroded, but are small, regularly spiral, and withont any strongly marked sculpture.

Color grayish white, with a pale yellowish green epidermis, which is easily deciduous.

Length 22^{mm}; greatest breadth, 11^{mm}; length of aperture, 14^{mm}; its breadth, 5^{mm}.

Station 2038, in 2033 fathoms (No. 34,846), and station 2041, N. latitude $59^{\circ} 22^{\prime} 50^{\prime \prime}$, W. longitude $68^{\circ} 25^{\prime}$, in 1608 fathoms (No.34,834). Albatross, 1883.

This species is dedicated to Mr. H. L. Bruner, who has been a member of the U. S. Fish Commission parties, during the past three years.
Pleurotomella Catharinæ Verrill and Smith, sp. nov.
Plate XXXI, figures $9,9 a$.
Shell thin, translucent, white, very slender, elongated, narrow, fusiform, with a long, narrow, tapered, nearly straight canal, and a tall, gradually tapered, acute spire. Whorls eight, evenly rounded,

Trans. Conn. dcad., Vol. VI. 20 April 12, 1884.
but not very conrex, with a distinct, flattenerl, smooth sulsutural band. Suture well marked, but not deep, decidedly oblique. Surface everywhere covered with conspicuous, regular, raiserl, revolving cinguli, in some parts with one or more smaller revolving lines in the spaces between them. The cinguli are obtusely rounded and entirely smooth, as well as the spaces between them, which are of about the same breadth; on the penultimate whon there are about fifteen cinguli, and on the upper whorls five or six.

The large, acute, brown nnclens consists of about four and a half whorls, which increase regularly ; the apical whorl is small, rounded and prominent; the others are distinctly carinated and shouldered; the portion above the shonlder slopes at a wide angle and is a little convex and nearly smooth, except close to the carina; the part below the carina of the shoulder is flattened and nearly straight, or even narrowed toward the suture, and crossed by regularly spaced, thin, elevated transverse ribs, with wider intervals; these ribs extend a little above the carina and then fade out; they rm nearly straight across all the whorls, except the first two, where they are more or less oblique; there is usually, on the larger whorls, a raised revolving line, or small carina, just above the suture.

The aperture is very elongated and narrowed at the base of the canal, which is much prolonged and slender, a little curved, owing to a slight sinuons cmrature of the columella-margin. The posterior notch in the outer lip is rather deep and narrow, situated immediately at the suture. The subsutural band, corresponding to it, shows faint curved lines of growth, parallel with its margin. Color white, except the nuclens, which is pale chestnut-brown.

Length of one of the largest specimens, 23^{mm}; breadth, 6.5^{mm}; height of spire, 11^{mm}; length of aperture and canal, 11.5^{mmn}; breadth of aperture, 3^{mm}.

Living specimens at station 2038 , N. latitude $38^{\circ} 30^{\prime} 30^{\prime \prime}$, W. longitude $69^{\circ} 08^{\prime} 25^{\prime \prime}$, in 2033 fathoms (No. 34,845) ; station 2041, N. latitude $39^{\circ} 22^{\prime} 50^{\prime \prime}$, W. longitude $68^{\circ} 25^{\prime}$, in 1608 fathoms (No. 37,871) ; station 2084, N. latitude $40^{\circ} 16^{\prime} 50^{\prime \prime}$, W. longitude $67^{\circ} 05^{\prime}$ $15^{\prime \prime \prime}$, in 1290 fathoms (No. 37,846) ; and at $2115, \mathrm{~N}$. latitude $35^{\circ} 49^{\prime}$ $30^{\prime \prime}$, W. longitule $74^{\circ} 34^{\prime} 45^{\prime \prime}$, in 843 fathoms (No. 3ñ,597). Albaltross, 1883.

This elegant species is dedicated to Miss Katharine J. Bush, who has, for several years, acted as assistant in the working mp of the large collections of mollusea, dredged by the U. S. Fish Commission,
and to whom the writer is indebted for important assistance in the preparation of this paper.

It is not very probable that this species properly belongs to Plenrotomella. I have placed it here, for the present, only provisionally.

> Gymnobela Verrill, gen. nov.

Shell in form and general appearance like Bela. Spire generally rather short. Body-whorl swollen. Nucleus with fine cancellated sculpture. Subsutural band not strongly marked. Posterior notch of lip shallow and usually not very distinct. Operculum alssent.

Gymnobela engonia Verrill, sp. nov.

Shell somewhat solid, white, more or less translucent, stout-fusiform, with the aperture about equal in length to the spire, which is shouldered, decidedly turreted, and tapered regularly to an acute apex.

Whorls fire below the mucleus, strongly angularly shouldered at about the middle, the portion above the shoulder forming a wide, abruptly sloping subsutural band, which is usmally slightly concave in the middle, but swells a little where it joins the suture; the whorls are flattened below the shonlder and a little narrowed at the suture, which is strongly impressed. 'The sculpture on the subsutural band consists of numerous, close, revolving lines, most distinct towards the shoulder, and of small, slightly raised, thin riblets, which are most distinct close to the suture and strongly excurved in the middle of the band, but bend forward strongly to the angle of the shoulder, where most of them disappear or l;lend with the ribs and lines of growth a little farther forward. Below the shoulder the surface is covered by many, rather thin, closely arranged, revolving cinguli, which on the whorls of the spire are separated by interspaces about twice their own width, but become mucl: closer on the middle of the last whorl, gradually becoming coarser aud more widely separated as they approach the canal, those on the anterior part being also thicker and more obtuse. Numerous rather small and slightly elerated ribs commence at the shoulder and curve obliquely forward across the conver part of the whorls, extenting to the suture on the upper whorls, but mostly fading out at the middle of the last whorl ; these ribs are obtusely rounded and wave-like, the interspaces being shallow, concare, in breadth about equal to the ribs; on the last whorl there are from twenty-five to thirty. On the spire-whorls the
intersections of the cinguli and ribs, which are of about the same size, produce a pretty regularly camcellated structure, but on the last whorl the cinguli are more numerous and less prominent than the ribs. The nncleus is chestnut-brown and consists of about two and a half regularly increasing whorls, the apical one being very small and regularly coiled; this surface appears to have been minutely cancellated by microscopic lines. Aperture irregnlarly oblong or oblong-ovate, strongly angulated by the shonlder, and decidedly widest at the base of the cohmella. Canal short, somewhat constricted, nearly straight; outer lip thin, projecting forward below the shoulder, with a broad, rounded, rather shallow simus at the middle of the subsutural band and a little removed from the suture. Operculum not present in the alcoholic specimens.

Length of one of the largest specimens, 17^{mm}; brealth, 10^{mm}; length of aperture, $10^{\text {mm }}$; its breadth, $35^{\text {mun }}$; length of body-whorl to tip of canal, $12^{\text {mum }}$. Another more slenter specimen is 15.5 mm long; 8^{mm} broad; length of aperture, 9^{nm}; its breadth, 3^{mm}.

Station $2041, N$. latitude $39^{\circ} 22^{\prime} 50^{\prime \prime}$, W. longitude $68^{\circ} 25^{\prime}$, in 1608 fathoms (No. 34,835); and station 2084, N. latiturle $40^{\circ} 10^{\prime} 50^{\prime \prime}$, W. longitude $67^{\circ} 05^{\prime} 15^{\prime \prime}$, in 1290 fathoms (No. 37,818).

Gymnobela curta Verrill, sp. nor.

Plate XXXI, figtre 10.

Shell small, short, fusiform, or subovate, with a low spire and very large body-whorl, forming about three-fourths the total length. The surface is finely decussated by longitudinal and spiral lines of nearly equal size. Whorls four below the muclens, very rapidly increasing, strongly convex, but freguently slightly flattened at the periphery, and sometimes distinctly angnlated at the shoulder, but more commonly evenly romnded; last whorl very ventricose. Suture strongly impressed, often slightly chamelled. The unclens consists of two or three small, light chestnut-brown whols, with very finely eancellated sculpture. The apical whorl is very small and regularly coiled, Seulpture on the rest of the shell consists of mumerous, rather fine. thin, regular revolving cinguli, which are separated by interspaces about twice their own brealth on the lower whorls, but more crowded on the upper ones. Two or three of the cinguli on the shonder are usually coarser and a little farther apart than the rest, and the largest of these of ten forms a slight carina aromed the most prominent part of the shoulder. On the subsutmal band the einguli are less distinet rad less regular, and often partially olsolete. Anteriorly they cover
all the surface to the tip of the canal. The cinguli are everywhere crossed by very numerons and regular, thin, raised lines or riblets, which are usnally of nearly the same size as the cinguli, but frequently are somewhat less conspicuous and a little farther apart. The riblets are nearly straight on the periphery of the whorls, but are somewhat angularly bent at the shoulder, and rum oblicnely forward across the subsutural band to the suture; on the subsutural band they are distinctly elevated, but rather thimner than elsewhere. By the crossing of these two sets of lines the surface is generally finely and regularly cancellated, except on the shoulder and snbsutural band, where the cancellation becomes more or less irregular or indistinct. Aperture rather large, broad-ovate, a little angulated at the shoulder, and with a very slight constriction at the base of the very short and rather narrow canal. The posterior sims is nearly obsolete, and indicated only by a shallow indentation just above the shoulder. Colnmella short, straight, its imer margin with a rather strong sigmoid curvature. The canal is nearly straight, very slightly recurved at the tip, narrowed by a slight constriction of the outer lip, at its base. Epidermis thin, not very distinct. Color of the fresh alcoholic specimens pale grayish or greenish white, more or less translucent.

Length of a medium sized specimen, $10^{\text {nim }}$; breadth, 6^{mm}; length of body-whorl and canal, $8^{m m}$; aperture, $6^{m m}$; its breadth, $2: 5^{m u n}$. One of the largest specimens is 16^{mm} in length; breadth, 9.5^{mm}; length of body-whorl and canal, 12^{mm}; aperture, 9^{mm}; its breadth, 4^{mm}.

Station 2043, in 1467 fathoms (No. 34,854); station 2076, in 906 fathoms (No. :37,812) ; station 207t, in 1255 fathoms (No. 37,798); station 2084, in 1290 fathoms (No. 37,795) ; and station 2097, in 1917 fathoms (No.35,227, one dead specimen) ; station 2115 , in 843 fathoms (No. 37,794). lt occurred in the largest numbers at station 2084, N. latitude $40^{\circ} 16^{\prime} 50^{\prime \prime}$, W. longitude $67^{\circ} 05^{\prime} 15^{\prime \prime}$, in 1290 fathoms, (twenty specimens, living and dead) ; and at station 2076, N. latitude $41^{\circ} 13^{\prime}$, iV. longitude $66^{\circ} 00^{\prime} 50^{\prime \prime}$.

Gymnobela curta, var. subangulata Verrill, nov.
Similar in form and size to the preceding, with which it is often associated. It differs in having the whorls more distinctly angulated at the shoulder, with one of the cinguli forming a distinct carina, which is surmounted by a row of small, often acute nodules, produced by the intersection of the longitudinal riblets. There is often another somewhat smaller spiral line below the carina, which also frequently
bears minnte nodnles. The rest of the surface is cancellated nearly as in the typical form, but the riblets are frequently more conspicuons than the cinguli. Forms intermediate between the variety and the type are of frequent occurrence.

This variety occurred, with the typical form, at stations 2043 and 2084, (No. 37,817 and 37,796). It was also taken at station 2038 , in 2033 fathoms (No. 37,797, one dead); and at station 2096, in 1451 fathoms (No. 37,793, one living).

This species may readily be mistaken for Bela hebes, especially when somewhat broken and eroded. The muclens, lowerer, is entirely different and the aperture is narrower anteriorly and shows a more distinct constriction at the base of the sijhon, which is narrower and less open than in the latter. The senlpture is also more distinctly and more regularly cancellated.

Bela subvitrea Verrill, sp. nov.
Shell translucent, white, thin but firm, fusiform, moderately stout, with a high, regularly tapered, acute spire, consisting of about six romeded whorls, which are crossed by rather thin, prominent ribs, strongly bent in a sigmoid curve, and having on the lower whorls rather faint spiral sculpture.

Whorls four to five below the muclens, strongly convex and a little swollen at the rounded shoulder, which is rarely somewhat angulaterl, and without a definite subsutural band. Suture strongly impressed, the upper part of the whorl rising rather abruptly from it. The nuclens consists of about two small, prominent whorls; the first is small, rounded, slightly mamilliform, and a little prominent; the next, constituting the greater part of the molens, increases rapidly and is de. cidedly prominent and somewhat obliquely placed, and bears about four or five raised, revolving lines, which are sometimes crossed by distinct lines of growth. The suture between the last nuclear whorl and the next is strongly marked and more oblique than any of the others. The remaining whorls are crossed by rather conspicnons, sharp, and rather elevated ribs, which are strongly excurved at and just above the shoulder, curving forward rapidly to the suture, and bending forward more gradually below the shoulder, forming a distinct sigmoid curve. The interspaces hetween the ribs are much wider than the ribs themselves, distinctly concowe, and crossed by rather feeble cinguli, which are usually not apparent on the ribs themselves. On the upper whorls the spial lines are usmally more conspicmous than on the lower ones, hut are often indieated chietty
by rather close, shallow furrows. On the last whorl the ribs extend to the base of the canal before they fade ont, and the spiral sculpture becomes coarser and a little more evident on its anterior part and on the canal. The surface is also a little roughened by faint lines of growth, parallel with the rils. Aperture oblong-ovate, rather narrow; outer lip sharp, thin, projecting forward in the middle in a broadly rounded curve, and slightly receding just above the shoulder, so as to form a broad and shallow sinus a little removed from the suture. Canal nearly straight, a little prolonged, distinctly constricted at its base by the incurvature of the onter lip. Colmmella straight, tapering anteriorly, its inner edge forming a well-marked sigmoid curve. Epidermis indistinct. Color translucent bluish white. The surface is not glossy, but the texture is more vitreous and delicate than in the more northern and shallow-water species of Bela.

Off Cape Matteras, station 2115 , N. latitude $35^{\circ} 49^{\prime} 30^{\prime \prime}$, W'. longitude $74^{\circ} 34^{\prime} 45^{\prime \prime}$, in 843 fathoms (No. 35,601, twenty-five living and (lead). Steamer Albatross, 1883.

Length of one of the larger specimens, 13.5^{mm}; breadth, 6^{mm}; length of body-whorl and canal, 9^{mm}; length of apertmre, 7^{mm}; its hreadth, $2.5 \mathrm{mb}^{\mathrm{mm}}$. Among the specimens collected there is some variation in portions; some individuals having the body-whorl relatively large, with the aperture broader and more ovate than in the specimen measured.

This species, in form and general appearance, bears some resemblance to B. pleurotomaria, but it is a thinner and more delicate shell, with a translucency not seen in the latter. The whorls are also more convex, the last more ventricose. The ribs are thinner, less numerous, and more strongly recurved below the suture; the spiral sculpture is not so strongly marked, and the nuclens is larger, with much finer spiral seulpture. The aperture and canal are similar in the two species, but somewhat narrower in B. pleurotomaria.

Bela subturgida Verrill, sp. nov.
Shell of moderate size, white, translucent, stout-fusiform, with swollen, angulated whorls, and a ilistinctly tureted, rapidly tapering spire, the sculpture consisting of rather distant ribs and much finer spiral cinguli.

The largest specimen, which is probably immature, has four whorls below the nuclens. The three upper whorls are abruptly angularly shouldered, the portion forming the smbsutural band rising nearly at right angles to the shoulder, below which the whorls are flattened
and strongly ribbed by abont sixteen prominent, rather narrow, obtuse, nearly straight ribs, which rise into anglar points or small, obtuse nodules at the shoulder; the interspaces are wider than the ribs and strongly concave. The ribs and interspaces also extend across the subsutural band to the suture, becoming small above the shoulder. The whole surface is covered by rather slender revolving cinguli, in the form of thin, raised lines, which are most conspicuous in the interspaces and more or less obsolete on the ribs. On the subsutural band the spiral lines are finer and eloser, and often indistinct toward the suture, but on the anterior part of the body-whorl they become somewhat coarser and wider apart. The last whorl is mueh swollen and has the shoulder somewhat rounded, while on the upper whorls there is often a distinct carina at the shonlder. The nuclens is small and prominent, smooth, and consists of about one and a half whorls, of which the apical is thmed up obliquely and incurved. The aperture is ovate, broadly rounded externally, and more strongly excavated at the base of the columella. Canal a little elongated, narrow, constricted at the base by the incurvature of the onter lip, and with the opening oblique, owing to the form of the columella margin, but not bent. Colnmella nearly straight, its imer margin forming a well-marked sigmoid curve, and strongly obliquely twisted at the anterior end.

Length, $9^{\text {nmm }}$; breadth, 5^{mm}; borly-whorl and canal, $6 \cdot 3^{\mathrm{mm}}$; length of aperture, 5^{mm}; its breadth, 2^{mm}.

Station 2115 , N. latitude $35^{\circ} 49^{\prime} 30^{\prime \prime}$, W. longitude $74^{\circ} 34^{\prime} 45^{\prime \prime}$, in 843 fathoms (No. 35,602, two specimens). Steamer Albatross, 1883.

This species has some resemblance to certain forms of the northern Bela scalaris. It is a thinner and much more delieate shell, with finer sculpture, and having the whorls less strongly angulated and the form of the aperture and eanal somewhat different.

Spirotropis ephamilla Verrill, sp. nov.

Shell elongated-fusiform, with a high, somewhat turreted spire, and a moderately elongated, slightly curved canal. Posterior sinus situated considerably below the suture, close to the shoulder. Whorls moderately eonsex, strongly angulated near the middle. Below the suture is a broad, flattened or slightly concave subsutural band, eovered with coarse and slightly raised spiral lines, with a series of small, rounded nodules close to the suture, and crossed by strongly excmerd, simous lines of growth, parallel to the edge of the posterior simus, and receding most at the shoulder, where there are usually two
raised cinguli, or small carine, more strongly marked than the others, and bearing each a series of small, rounded nodnles where they are erossed by the stronger lines of growth ; sometimes these nodules are present ouly on the upermost of these two carina, which are separated by a narrow interspace. Below the carine the whorl rapidly decreases in size, the anterior slope being nearly the same as the posterior one, and of abont the same breadth on the spire; this portion of the whorl is crossed by three to five rather coarse, raised, irregular spiral lines, and mmerous fine lines of growth, which bend abruptly forward at the shoulder and then curve obliquely downward and forward, crossing both the spiral lines and their interspaces, which are about the sanie in breadth. On the body-whorl the spiral lines cover the whole surface below the shoulder, becoming eoarser and farther apart helow the middle, and again becoming smaller and closer together on the base of the siphon. Aperture narrow-ovate and somewhat angulated by the shoulder: Outer lip sharp-edged, with a rather broad and deep posterior siuns, which is deepest at the shoulder; below the shonder the lip projects forward in a broad even curve to near the base of the canal, where it is somewhat contracted. The canal is moderately long, somewhat contracted at the base, and a little simous. The cohmella has a strong simons curvature, and is strongly excavated at the widest part of the aperture. Upper whorls and nuclens eroded in our examples. Epidermis yellowish horncolor, elosely adherent. Shell bluish white within the aperture. Operculum well-developed, ovate, dark horn-color.

Length of the shell without the tip, 25^{mm}; leugth of body-whorl to tip of canal, 17^{mm}; greatest breadth, 10^{mm}; length of aperture, 13.5^{mm}; its breadth, $5 \cdot 55^{\mathrm{mm}}$.

No. 35,237 , station 2098, N. latitude $37^{\circ} 40^{\prime} 30^{\prime \prime}$, W. longitude 70° $37^{\prime} 30^{\prime \prime}$, in 2221 fathoms. One living specimen with only the four lower whorls present. No. 35,220 , station 2097 , N. latitude $37^{\circ} 56^{\prime}$ $20^{\prime \prime}$, W. longitude $70^{\circ} 57^{\prime} 30^{\prime \prime}$, in 1917 fathoms. Another similar specimen, but dead and much eroded.

Typhlomangelia Tanneri Verrill and Smith, sp. nov.

Plate XXXi, figure 8.

Shell loug-fusiform, with a high, turreted, regularly tapered, acute spire, all the whorls having, at some distance below the suture, a well-marked, angular shoulder, which is crowned by a series of oblique nodular riblets on all the whorls except the last.

Whorls about eight, rather convex, strongly angulated, with a broal, concave subsutural band above the shoulder. The subsutural band is erossed by delicate, strongly excurved, distinctly raised lines of growth, which recede most at the middle of the band and bend far forward next the suture ; a little below the suture there is usually a thin, raised spiral line; the rest of the band is destitute of spiral lines, except close to the shoulder. The upper whorls, just below the nuclens, are crossed by numerons very oblique, morlerately elevated, but somewhat conspicnous ribs, of which the number is about eighteen to twenty, and these are separated by concave interspaces, about equal to their own breadth. The ribs terminate abruptly at the shoulder, so as to form there small, obtuse, somewhat angular nodules; but they decrease rapidly in crossing the whorls, and mostly fade out before reaching the suture. The spiral sculpture consists of numerous rather fine, thin, raised cinguli, which cross the ribs and interspaces alike, and are separated by intervals greater than their own breadth. On the last whorl the ribs disappear and only the spiral sculpture remains; the cinguli are here thicker and more elevated, and are roughened by numerons close, raised lines of growth, which cross both the cinguli and their interspaces ; at the base of the canal the spiral lines become finer and closer. The nuclear whorls are somewhat eroded in our specimen. There are apparently two small, rather prominent, regularly spiral whorls. The aperture is narrow, oblong-ovate, strongly angulated at the shoulder and contracted above it, at the noteh. The outer lip is thin and sharp, projecting considerably forward and broadly rounded below the shoulder. Posterior sinns a rather deep and very broad, well rounded notch, separated a little from the suture, the deepest part corresponding to the middle of the wide subsutural band. Canal rather broad and short, scarcely differentiated from the aperture. Columella nearly straight, its imner margin with a slight sigmoid curvature; inner lip somewhat excavated in the middle and covered by a thin layer of enamel. Color brownish white, without luster. Epidermis ineonspicuous. Opereulum dark horn-color.

Length of the single specimen obtained, 21^{mm}; breadth, $9^{\text {minn }}$; length of body-whorl and canal, 14^{mnn}; length of aperture, 10^{mm}; its breadth, $3^{\text {min }}$.

Station 2084, N. latitude $40^{\circ} 16^{\prime} 50^{\prime \prime}, W$. Iongitude $67^{\circ} 05^{\prime} 15^{\prime \prime}$, in 1290 fathoms. (One specimen, No. 38,067 .)

This species bears considerable resemblance to T', nivele (Lov.) Sars, of Europe, but is distinct in the character of its sculpture. It
also resembles Spirotropis ephomilla, but the latter has a deeper notch, more remote from the suture, its sulsutural band is broader, and the shoulder of the whorts less marked, while the canal is longer and more constricted at its base.

RACHIGLOSSA.

Marginella borealis Verrill, sp. nov.
Marginella carnea Verrill, Catal. Mar. Moll., Trans. Conn. Acad., v, p. 489, (non Storer.)

Plate XXix, figure 4.

Shell of medium size, solic, smooth, somewhat shining, with a rather elevated, acute spire, showing all the whorls, of which there are about five. Last whorl somewhat swollen, with a slightly prominent, rounded shoulder, considerably below the sutnre.

The whorls of the spire increase regularly in size and are slightly convex; the inuclear whorls are smooth, polished, shining, evenly rounded. Suture distinct, though filled up with the thin coating of enamel that covers the spire, but does not conceal its structure. The aperture is narow, expanding a little anteriorly, towards the canal, which is evenly romnded at the tip. The outer lip is thickened by a stout rib, evenly romeded externally, and faintly cremulated on the inner margin, especially on the anterior: half. The posterior sinus is distinctly marked as a smooth, rounded groove, surrounded by callus, at the junction of the lip with the borly-whorl. The inner lip has a conspicuons, raised, ovate patch of white callus along the posterior half, covering the adjacent portion of the borly-whorl, and extending backward more or less on the spire; on the anterior half there are four oblique, stont, prominent plications, nearly equal in height; the most anterior of these is formed by the twisted imner edge of the colnmella, forming the inner border of the canal ; the most posterior is less oblique and often a little smaller than the others. The callus extends along the lower lip, ontside of the plications, to the anterior border of the canal, sometimes, when best developed, forming by its outer margin a slight groove. Shell yellowish flesh-color, varied with whitish; sutural lines, callus deposits, plications, and inner margin of the onter lip, white; extemal surface of the thickened outer lip usnally with three orange-yellow spots, the largest of which forms a narrow, elongated patch along the anterior and outer border of the canal, extending somewhat backward along the lip; the next is usually a broader, oblong patch, just below the shoulder ; the third is a small, rounded spot close to the suture. Frequently the anterior
spot is divided into two by a patch or band of whitish at the base of the canal; sumetimes the middle spot is also divided into two, and in other cases the posterior spot is as large as the middle one. There is usually a faint, whitish revolving band at the shoulder and another at the base of the canal. Interior salmon-colored.
Length, 14^{mm}; breadth, $7 \cdot 5^{\mathrm{mm}}$; length of body-whorl, 12^{mm}; length of aperture, 10^{mm}; its breadth, about 1^{mm}.

Several perfect living specimens were taken by the Albatross, in 1883, at stations 2011 and 2012, in 81 and $66 \cdot 5$ fathoms, off Norfolk, Va. (Nos. 35,307 and 35,375 .) Dead specimens were taken off Martha's Vineyard by the Fish Hawk, in 1880 and 1881, in $64^{\prime} 5$ to 100 fathoms.
The occurrence, so far northward, of a large and well developed species of this almost tropical genus is remarkable. It inhabits, however, only the warm zone along the imner edge of the Gulf Stream, where it is associated with Solariom, Dolium, Avicula, and other southern genera.
This handsome species bears some resemblance to M. carnea and M. roscidu, from our southern coasts, in size and color, but differs from both those species in having a much higher and more acute spire, with all the whorls distinctly visible, and in the form and arrangement of the plications.
This species is also related to Marginella limatula Conrad, of which I have examined several specimens from the Miocene of Pagan Creek, Va. The latter differs, however, in being a stouter and broader-shouldered shell, with a much lower spire, in which the sutures are more concealed by the deposit of callus. The fossil form is, therefore, evidently more closely related to, if not identical with, M. apicina* and M. roscide, found in shallow water on our southern and Gulf coasts, than to the present species. The number and position of the plications on the columella and the crenulations on the outer lip are the same as in M. borealis.

Volutella lachrimula Gonld.
Proc. Boston Soc. Nat. Hist., viii, p. 281, 1862 ; Otia Conch., p. 238.
Taken in considerable numbers at station 2109, off Cape Hatteras, in 142 fathoms, by the Albatross, 1883.

[^2]Originally described from off Georgia, in 400 fathoms. According to Mr. W. H. Dall, it is found in shallow water on the west coast of Florida (Proc. Nat. Mus., vol. vi, p. 324, 1883).

Buccinum abyssorum Verrill and Smith, sp. nov.
Plate XXXI, flgures $11,11 a, 11 b$.
Shell thin, white, with a high, acute spire and strongly carinated whorls. Whorls seven to eight, strongly convex, angulated by the sharp revolving carine, of which there are usually three very prominent ones on the whorls of the spire. The upper one of these is situated at a considerable distance from the suture and forms a prominent shoulder, above which the surface of the whorl is somewhat concave and covered with several much finer, raised, spiral lines, of which one, usually at abont the middle, is a little more prominent than the rest; the second carina is situated below the middle of the whorl and is separated from the upper one by a broad, concave interspace, which is covered by rather fine, distinct, raised spiral lines, separated by very distinct grooves of about the same breadth; the third carina is usually situated just above the suture, but is sometimes concealed by it; it is separated from the second carina by a concave, spirally lined interspace, a little narrower than that between the first and second carina. On the last whorl there are usually two or more similar, but somewhat less prominent, carine below the middle of the whorl, and the surface is everywhere covered by regularly spaced spiral lines or cinguli and grooves. Aperture rather small, somewhat semicircular; the onter lip is nearly regularly rounded from the suture to the base of the canal, but is slightly angulated at the carince. In some of the larger specimens it somewhat recedes, and is slightly everted just below the suture. The canal is short, somewhat narrowed, nearly straight, or sometimes with the anterior end a little everted. The columella is nearly straight, its inner margin having a slight sigmoid curvature; the imner lip is covered by a very thin coat of smooth enamel, which extends out only a slight distance beyond the edge of the lip, with a broadly curved outline. The nuclear whorls are small and regularly spiral, consisting of rather more than two turns, and have the surface smooth and glossy. On the succeeding whorl there are about four distinct carinæ. The epidermis is inconspicuous or wanting. The operculum is rounded-elliptical, considerably smaller than the aperture, with the nucleus situated near the outer edge, in front of the middle. The animal is destitute of eyes; the tentacles are long, slender, and gradually tapered.

Length of one of the largest specimens, a female, 43^{mm}; its breadth, 24^{nm}; length of spire, 25^{mm}; length of hody-whorl to end of canal, 29^{mm}; length of aperture, 21^{mm}; hreadth, 12^{mm}; length of opereulum, 11^{mm}; breadth, 8^{mm}.

This species was taken at station 2051 , in 1106 fathoms ; 2052, in 1098 fathoms; 2074, in 1309 fathoms; 2076, in 906 fathoms; 2077, in 1255 fathoms; 2094, in 1022 fathoms; 2102, in 1209 fathons; 2103, in 1091 fathoms; 2111 , in 938 fathoms. It was most abundant at stations $2074, \mathrm{~N}$. latitude $41^{\circ} 43^{\prime}$, W' longitude $65^{\circ} 21^{\prime} 50^{\prime \prime \prime}$, where twenty-five living and seven de:d specimens were taken (No. 38,319); station 2075 , N. latitude $41^{\circ} 09^{\prime} 40^{\prime \prime}$, W^{\top}. longitude $66^{\circ} 02^{\prime}$, eighteen specimens, nine living (No. 35,008) ; and station 2094, N. latitude $39^{\circ} 44^{\prime} 30^{\prime \prime}$, W. longitude $71^{\circ} 04^{\prime}$, twelve specimens, seren living, (No. 34,691).

This species shows considerable variation of length to breatth, many specimens being more slender than the one measured above. The carine also vary in prominence; in some specimens they are strongly raised and very conspicuons, and in others they are but little more elevated than the revolving lines that cover the rest of the surface. It shows scarcely any resemblance to the several species hitherto known from our const. In general appearance it resembles the Buccinopsis striatu Jeff., figured in the "Depths of the Sea," p. 464, fig. 76, but not describel.

Sipho obesus Verrill, sp. nov.
Shell of moderate size, stout-fusiform, with a rather short, rapilly tapering and bluntly pointed spire, sculptured by many strong transverse ribs and nomerous spiral lines. Epidermis with slender hairs along the spiral lines.

Whorls four to five, besides the moleus, increasing rapidly, erenly rounded, but only moderately convex. On the upper whorl, next the nuclens, the spiral cinguli are somewhat prominent and nearly as broad as the concave interspaces; on the second whorl below the nucleus there are seven or eight cinguli, which are crossed by the conspienous lines of growth and by distinct, but not very prominent ribs; on the next whord the ribs are about sixteen in momber, and become much more prominent, separated by concare interspaces, which about equal the rihs in breadth; the ribs are most prominent on the convex part of the whorls, where they are excurvel. On the body-whorl the ribs become less comspienous, but extemb below the middle of the whorl, fading out towards the hase of the canal.

The cinguli, which are very numerons on the lower whorls, are mostly thin, fine, and much elevated, but are rendered conspicuons by the close row of fine, sharp, epidermal lairs rising from each spiral line. The lines of growth are very mumerous and close, thin, raised lamella. The suture is not very oblique and a little impressed, and has a wavy or cremulated outline, due to the ribs, which extend to the suture, both above and below. The nucleus is rather small, composed of about two whorls. The apical whorl is very small, smooth, and regularly coiled, but only a little exposed; the second whorl shows traces of spiral lines. The outer lip is sharp, thin, regularly curved, and not very consex. The columella-lip is strongly excarated in the middle, and the columella-margin has a strong sigmoid curvature and a spiral twist. The canal is rather broad, moderately long, rather strongly bent to the left, and a little turned up at the end. The aperture is elongated-ovate, with the inner margin a little more convex than the outer. The operculum is long-ovate, rounded posteriorly, but with the anterior end narrowed and a little incurved on the inner margin, near the anterior end, but somewhat dilated into a rounded lobe in the middle; the mulens is situated on the inner margin, close to the anterior end. Epidermis distinet, finely hairy along the spiral lines, dull greenish yellow in color. In alcohol the shell is dull pinkish white, and the young specimens are more or less translucent.

Length of one of the larger specimens, 25^{mm}; brealth, 14^{mm}; length of body-whorl and canal, $19 \cdot 5^{\text {mun }}$; length of aperture, 15^{mm}; its breadth, $5 \cdot 5 \mathrm{~mm}$.

Station $2115, \mathrm{~N}$. latitude $35^{\circ} 49^{\prime} 30^{\prime \prime}$, W. longitude $74^{\circ} 34^{\prime} 45^{\prime \prime}$, in 843 fathoms (No. 35,600). Many specimens, both young and adnlt, part of them living.

Some of the specimens show considerable variation from the type described. In some the spiral cinguli are larger, more prominent, and more unequal in size, three or more smaller ones being usually sitnated between the more prominent ones on the lower whorls. The suture in some cases is deeper and slightly channelled.

This species is more nearly related to S. colatus, var. hebes, than to any other described species, but it is a larger, much stonter and coarser species, with the spiral scnlpture more conspicuously developed, and with a distinctly hairy epidermis. The canal is longer and much more bent. The nucleus is larger and somewhat different in form. The typical form of S. ccelatus is still more slender, and has a decidedly higher and more regularly tapered spire, with the suture much more impressed.

Sipho profundicola Yerrill and Sinith, sp. nor.
Plate XXXI, figure 13.
Shell thin, stont-fusiform, with very convex, evenly rounded whorls and a morlerately elevated, somewhat acute, turreted spire, which occupies nearly one-half the length of the shell. Whorls six or seven, the apex eroded in all of our specimens, apparently with a small regularly spiral uncleus. The whorls increase rather rapidly and are separated by a deeply impressed suture. The sculpture on the two lower whorls consists of strongly marked, narrow, prominent spiral cinguli, which are somewhat unequal in size, and separated by wider, concave interspaces, which are crossed by distinctly raised, but delicate and close, lines of growth, due largely to the epidermis rising in scale-like forms. These lines of growth are less conspicuous over the spiral ribs, which they render somewhat uneven. The upper whorls have, in addition to the small spiral cinguli, a pretty distinctly marked carination at the shoulder, and are crossed by slightly elevated, longitudinal ribs or folds, which produce a series of slightly raised nodules where they cross the larger carina at the shoulder. On the pemultimate whorl there are from fourteen to sixteen revolving cinguli. Aperture long-ovate, broadly rounded in the middle. The onter lip is thin and evenly rounded from the suture to the base of the canal, where it forms a sinuous curve. The canal is short, narrow, somewhat constricted at the base and nearly straight, except near the end, where it is slightly recurved. Columella not much bent, its inner edge with a slight sigmoid curvature. The operculum is thin, ovate, with the inner margin more convex than the outer, and with the posterior margin evenly romnded and the anterior end slightly curved to the obtnse tip, which shows no spiral structure. The operculum is rather small as compared with the size of the aperture. Epidermis is thin but distinct, not hairy, though rising into scale-like edges along the lines of growth. Its color is pale brownish yellow.

The only specimen with the animal is a male (from station 2038), the largest in the collection. The tentacles are long, slender, tapering to acute tips. No eyes can be detected in the preserved specimen. The other specimens show some variation in the proportion of length to breadth and in the size and closeness of the revolring cinguli, which are sometimes pretty regularly alternately larger and smaller.

Length of the largest specimen, male, 40^{mm}; breadth, 23^{mmm}; length
of hody-whorl and canal, 30^{mm}; length of aperture, 25^{mm}; its breadth, $12^{m \mathrm{~m}}$; breadth of canal at base, 5^{mm}; height of spire, $18^{\text {mm }}$; length of operenlum, $12^{\text {min }}$; its breadth, 8^{mm}.

This species oecurred at stations 2037, N. lat. $38^{\circ} 53^{\prime}$, W. long. $69^{\circ} 23^{\prime} 30^{\prime \prime}$, in 1731 fathoms, four dead (No. 37,999) ; station 2038, N. lat. $38^{\circ} 30^{\prime} 30^{\prime \prime}$, W. long. $69^{\circ} 08^{\prime} 25^{\prime \prime}$, in 2033 fath., one living speeimen (No. 38, +11); station 2097, N. lat. $37^{\circ} 56^{\prime} 20^{\prime \prime}$, W. long. $70^{\circ} 57^{\prime} 30^{\prime \prime}$, in 1917 fath., four dead (No. 35,250) ; and station 2106, N. lat. $37^{\circ} 41^{\prime} 20^{\prime \prime}$, W. long. $73^{\circ} 03^{\prime} 20^{\prime \prime}$, in 1497 fath., one dead (No. 35,465).

Sipho profundicola, var. dispar, nov.
Shell of medimm size, stout-fusiform, with very convex, rounded whorls, the upper ones with both transverse ribs and spiral lines; the lower ones with spiral lines only. Whorls about six, besides the nuclens, which is eroded. They are slightly shoulderen and somewhat turreted and increase rapidly in size. The upper oues have stout, raised spiral lines or einguli, of unequal size, and mostly acute at summit, separated by wider, concave interspaces; they are also crossed by many rather feebly marked transverse ridges, most distinct at the shoulder; these disappear on the lower whorls, on which there are mumerons, conspicnous, unequal, mostly strongly raised, spiral lines, which cover the whole surface. One of these, considerably larger than the rest, forms the angle of the shoulder; above this the whorls descend somewhat abruptly to the suture, but with a convex outline; just below the angle the whorls are a little flattened and then are convexly rounded. The more prominent of the cinguli are somewhat thickened and obtusely rounded; between these there are from three to five smaller and thinner ones. The interspaces are strongly concave and broader than the raised lines; both the cinguli and interspaces are crossed by crowded, thin, raised lines of growth, along which the epidermis rises into small, short hairs, or thin scales. Aperture ovate, rather broad, slightly angulated at the shoulder. Canal moderately long, rather narrow, somewhat bent to the left, and slightly turned up at the end. Columella strongly sinuous, with the inner margin sharp and decidedly twisted along the margin of the canal. Borly-whorl decidedly excavated along the inner lip. Opereulum broad-elliptical, with the nucleus at the anterior edge, yellowish horn-color. Shell intemally bluish white. Epidermis pale greenish yellow.

Length of the largest specimen, 30^{mm}; breadth, $1 \%^{\mathrm{mm}}$; length of borly-whorl to tip of canal, 23^{mm}; length of aperture and canal, 19^{mm}; brealth of aperture, 8^{mm}.

A living specimen was obtained at station 2042 , N. lat. $39^{\circ} 33^{\prime}$, W. long. $68^{\circ} 26^{\prime} 45^{\prime \prime}$, in 1555 fathoms (No. 37,955), by the Albatross.

This species bears little resemblance to any of those previonsly described from our coast. It is a larger and much stouter shell than S. pygmens, with much more convex whorls, and the latter species is without transverse ribs on the upper whorls. The last named character shows an affinity with S. celatus and \mathbb{S}. glyptus, but these are both smaller and more slender, and are ribbed in a much higher degree.

Sipho cælatus, var. hebes Verrill, nov.
This variety differs from the typical form in having the spire shorter, and more abruptly tapered toward the tip, and in having the whorls somewhat flattened, with the suture shallower, so as to give the shell a more cylindrical form. The ribs are mumerous and well developed on all the whorls below the nueleus, and are distinctly excurved on the most convex part of the whorls. The lines of growth are thin and close, but are distinctly raised, and run parallel with the ribs. The spiral cinguli are very mumerons, rather thin, not very prominent, often nearly obsolete on the last whorl. 'The operculum is ovate or pear-shaped, with the anterior end obtusely pointed and a little incurved, with the nucleus at the inner edge, near the anterior end, and showing a very slight tendency to the subspiral structure.

This form occurred at station 2003 , N. lat. $37^{\circ} 16^{\prime} 30^{\prime \prime}$, W. long. $74^{\circ} 20^{\prime} 36^{\prime \prime}$, in 640 fathoms, three specimens, one living (No. 35,659); station 2077 , N. lat. $41^{\circ} 09^{\prime} 40^{\prime \prime}$, W. long. $66^{\circ} 02^{\prime}$, in 1255 fath., one living specimen (No. 38,015) and station 2103, N. lat. $38^{\circ} 47^{\prime} 20^{\prime \prime}$, W. long. $72^{\circ} 37^{\prime}$, in 1091 fath., one living and one deat (No. 35,424).

Sipho (Mohnia) cælatulus Verrill, sp. nov.
Shell small, fusiform, with an elevated, acute spire, the lower whorls with transverse ribs and raised spiral lines, the upper ones usually without ribs; in general appearance resembling S. ccelctus, but with the spire more elevated and acute and the ribs less strongly developer. Whorls about seven, moderately convex, not distinctly shouldered; suture rather deep, simple. 'The mucleus is small, smooth and little prominent, consisting of about two whorls; the :upi-
cal whorl is very small, closely and regularly coiled, largely covered by the next whorl, which is at first smooth, then shows delicate spiral lines which gradually become stronger; the next two whorls are covered with rather strong, elevated, spiral cinguli, unequal in size and obtuse at summit, separated by interspaces of about the same width. The first whorl below the nucleus has four or five cinguli ; the next has one or more smaller lines in each of the interspaces between the primary ones; the succeeding whorl has about ten to twelve prominent cinguli, with some additional ones of smaller size; on the lower whorls the cinguli become much more numerous, covering the whole surface, the most prominent surrounding the periphery and having three to five smaller ones between them ; just below the suture the cinguli are often less prominent than elsewhere, and are rendered wavy by transverse ribs. The two upper whorls, below the nuclens, are generally destitute of transerse ribs, or have them but slightly developed; on the succeeding whorls they become somewhat more conspicuous; they are broad, luw, romded at the summit, nearly straight, but a little receding just above the middle of the whorls, and are evenly spaced, having concave intervals about equal to their own breadth. On the lower whorls there are about twelve to fourtcen of these ribs. Both the ribs and interspaces are cqually crossed by the revolving cinguli, and their entire smface is covered by fine, close, raised or slightly lamelliform lines of growth. Outer lip sharp, thin, rather evenly rounded, contracted at the base of the canal, which is moderately long, narrow, twisted, and a little recurved. Aperture long-ovate, rather narrow, regularly incurved on the inside. Columella strongly bent and spirally twisted in a sigmoid curve. Operculum broad-orate, obtusely rounded at the anterior end, with the melens situated slightly within the margin of the inner edge, from which the lines of growth diverge in a subspiral manner. There is often a slight notch on the imer margin, just back of the nucleus. Epidermis inconspicnons. Color, in alcohol, pate pink or pinkish white, translucent, usually white or yellowish white when dried.

Length of one of the larger specimens, 21^{mm}; breadth, $9^{\text {min }}$; length of hody-whorl and canal, $14^{\text {min }}$; length of aperture, $10^{\text {mm }}$; its breadth, $4^{m i n}$. Other specimens are decidedly stonter than the one measured.

Station 2048 (No. 34,832) ; sta. 2051 (No. 35,259) ; sta. 2052 (No. 35,229) ; sta. 2072 (No. 38,052) ; sta. 2076 (No. 35,149) ; sta. 2077 (No. 35,248) ; sta. 2084 (No. 35,185), in 547 to 1290 fathoms. It occurred in most abundance at stations 2076 , N. lat. $4!^{\circ} 13^{\prime}$, W.
long. $66^{\circ} 00^{\prime} 50^{\prime \prime}$, in 906 fathoms, one hundred and twenty-five specimens, seventy-five living; station 20tr, N. lat. $41^{\circ} 49^{\prime} 40^{\prime \prime}$, W. long. $66^{\circ} 02^{\prime}$, in 1255 fathoms, fifty-five specimens, twenty-five living; and station 2084, N. lat. $40^{\circ} 16^{\prime} 50^{\prime \prime}$, W. long. $65^{\circ} 05^{\prime} 15^{\prime \prime}$, in 1290 fathoms, one hundred and fifty specimens, seventy-five living.

This species might readily be mistaken for S. celatus V., but the latter has a shorter, less acute and more abruptly tapered spire, a shallower suture, and the transverse ribs are prominent evell on the whorls next to the nuclens. The sculpture, however, on the lower whorls agrees very closely. The operculum differs in form and structure. S. glyptus has the spire longer and more acute, with the nuclens more prominent and different in form. Its spiral sculpture is more highly developed and quite distinct in appearance from that of the present species. Althongh this species is referred to the sulbgenus Mohnia, on accomnt of the subspiral structure of the operenlum, this feature is less marked than in Mohnia Mohmii, the type of the group, as established by Friele, in this respect agreeing nearty with Sipho (Mohnia) parvus V. and S. In fact, in respect to the operenlum, it is somewhat intermediate between typical Sipho and Mohnia.

Sipho (Mohnia) simplex Verrill, sp. nov.
Shell small, short-fusiform, thin, delicate, somewhat translucent, with evenly convex whorls, and with numerous fine spiral lines and raised lines of growth, but without ribs. Canal short, nearly straight. Spire rather short, regularly tapered, acute. Whorls five or six, evenly romded, rather convex. Suture well impressed, simple. The nucleus is very small, smooth, with the apical whorl minute, regularly spiral and largely concealed by the next whorl. Faint spiral lines commence on the second whorl. On the first whor helow the nuclens there are four or five thin, sharp cinguli ; on the next these increase to ten or twelve, which are nearly equal, moderately raised, and separated by interspaces of about their own width; on the boily-whorl the cinguli become very mumerons ancl very regular, covering the whole surface to the base of the canal, but some of those around the periphery are somewhat thicker than the rest, with the summit somewhat obtnse or flattened; alternating with these are others of smaller size and thimer. The whole surface, both of the cinguli and interspaces, is crossed by very numerous, close, thin, raised, lamelliform lines of growth, which recede on the more convex part of the whorl, but bend forward toward the
suture. Aperture rather broad-ovate, narrowing gradually to the canal, without any marked constriction. Canal short, rather broat, wide at base, narrowing toward the tip. Colomella nearly straight, slighty sigmoid toward the tip. Operculum small, pear-shaped, narrowed antcriorly, with the inner edge slightly incurved, and with a minute notch close to the tip, just behind the minute subspiral nucleus, which is situated just within the margin, much as in the preceding species and S. purous. Epidermis thin, occasionally rising into minute scales and points along the lines of growth, especially near the suture. Color, in alcohol, dull pinkish white. Nuclear whorls pale brownish.

Length of one of the largest specimens, $14^{m m}$; breadth, $7 \cdot 5^{\text {mm }}$; length of borly-whorl and canal, 10^{mm}; length of aperture, $8^{m m}$; its breadth, $3 \cdot 5^{\mathrm{mm}}$.

Station 2115, N. lat. $35^{\circ} 49^{\prime} 30^{\prime \prime}$, W. long. $74^{\circ} 34^{\prime} 45^{\prime \prime}$, in 843 fathoms, three living specimens (No. 35,573) ; and station 2055, N. lat. $42^{\prime} 32^{\prime \prime}$, W. long. $68^{\circ} 17^{\prime}$, in 99.5 fathoms, one dead specimen.

This species has some resemblance to Mohnia Moluii Friele, for a specimen of which I am indebted to the kindness of Mr. Fricle. The latter is a less delicate shell, with coarser spiral lines, and with much larger muclear whorls, and the operculum is much more distinctly spiral, its nucleus being larger and farther from the elge.
S. concinmes (Fusus concinnus Jeff.), is also similar to our species in form and size.

Sipho leptaleus Verrill, sp. nov.
Plate IXXI, figere 14.
Shell small, fusiform, glossy white, with five whorls, which are very convex, slightly carinated and angulated in the middle, on the lower whorls. Suture well impressed. Spire elevated, regularly tipered, acntc. The sculpture consists of mumerons regular, thin, delicate, raised, longitudinal ribs, which are bent in a sigmoid curve, the part corresponding to the most prominent angle of the whorls strongly receding; and of fine, microscopic, wavy revolving lines between the ribs. There is usually a distinct internal line, just below the suture. Aperture irregularly ovate, rather narrow, clongated. Onter lip thin, rounded to the base of the canal, which is somewhat lengthened, oblique, and a little twisted. The columellamargin of the eanal forms a sigmoid curve. Nuclens prominent, roundel, consisting of about one whorl and a half, covered with fine spiral lines.

Length, $3 \cdot 5^{m m}$; breadth, $2^{m m}$; length of boty-whorl and canal, $2 \cdot 3^{\text {min }}$; length of aperture, $2^{\text {min }}$; its breadth, about $1^{\text {mun }}$.

Off Martha's Vineyard, station 1143 , in 452 fathoms, soft mud, 1882. One specimen.

The atfinities of this shell are doubtfinl, as the animal and operculum are both makown. The seulpture resembles that of some Pleurotomidæ.

Trophon Lintoni Verrill and Smith, MSS.
Verrill, Amer. Journ. Sci., vol. ธxiv; p. 365, November, 1882.
Plate XXIS, figure 1.
Shell stont, rough, with six very couvex, somewhat shonldered whorls, crossed by abont nine very prominent, thick, obtuse ribs; whole surface covered with strong, elerated, obtuse, scals, revolving einguli, usually alternately larger and smaller, separated by narrow, deep groores; they are crossed by arched scales or lines of growth. Aperture broad; canal short, narrow, a little curved; umbilical pit distinet, but small.

Length, 28^{mm}; brealth, 17^{mm}; length of canal and hory-whorl, 19^{mm}; length of aperture, $15 \cdot 5^{\mathrm{mm}}$; its breadth, $7 \cdot 5^{\mathrm{mm}}$.

Named in honor of Professor E. Linton, a member of the Fish Commission parties in 1882 and 1883.

Off Martha's Vineyard, station 1118, in 70 fathoms, Fish Hawk, 1882. One specinen. No other example has been taken.

Trophon clavatus G. O. Sars.
Moll. Reg. Arct. Norvegix, p. 249, pl. 15, fig. 12; pl. 23. fig. 14, and pl. 1X, fiy. 17 (dentition).
This species is rather common in our deeper Aredgings.
It agrees very well with sars's descriptions and figures. Among our mumerons specimens there is considerable variation in form, and in the number and prominence of the thin clevited ribs.

It oeenrred at station 2035 , in 1362 fathoms: sta, 2037, in 1731 fath. ; sta. 2 Q38, in 2033 fath. ; sta. 2041 , in 1608 lith. ; stal. 2042 , in 55 f:th. ; sta. 2043, in 1467 lath. ; sta. 2076 , in 900 fith. ; sla. 2084 , in 1290 fath. ; sta. 2096 , in 1451 fath. ; sta. 2115, in st3 fath.

It was most abundant at sta. 2038 , N. lat. $38^{\circ} 30^{\prime} 30^{\prime \prime}$, W^{\prime}. long. $69^{\circ} 08^{\prime} 25^{\prime \prime}$, in 2033 fath., twenty specimens (No. 34,847) ; sta. 2076. N. lat. $41^{\circ} 13^{\prime \prime}$, Wr. long. $66^{\circ} 00^{\prime} 5 u^{\prime \prime}$, in 906 tith. (No. 38,041),
eighteen living specimens; and sta. 2115, N. lat. $35^{\circ} 49^{\prime} 30^{\prime \prime}$, W. long. $74^{\circ} 34^{\prime} 45^{\prime \prime}$, in 843 fath. (No. 35,583), forty living. It was taken by Sars, off Lofoden, in 120 to 200 fath.

T※NIOGLOSSA.

Benthodolium Verrill, gen. nov.
Shell rather large, shape somewhat intermediate between Buccimum and Dolium. Spire moderately elevated. Whorls convex, last one ventricose. Aperture large, broad, somewhat semicireular. Canal very short, scarcely differentiated from the aperture, formed chiefly by the eversion and turning up of the anterior end of the columella-margin. The cohmella-lip is thickened and simons, extending over the umbilical region. A distinct, well defined layer of enamel, on the body-whorl, comects the onter lip with the colnmella. No umbilicus. The operculnm is large, moderately thick, homy, ovate or subcordate, with a large, spiral molens, sitmated a little within the margin of the broad anterior end, which is slightly emarginate in the middle, opposite the nuclens.

The animal, in alcohol, has a broad head, with large, stout, tapering, acute tentacles, apparently withont any trace of eyes. Proboscis moderately long. The siphon is indicated only by a short romnded fold of the mantle-edge. The foot is short and broad, bluntly rommed behind, with a deep transverse groove in the front margin. Gills very mequal in size, the lower only about half the length of the upper.

The odontophore, in the type-species, is small and short, with teeth somewhat like those of Dolium. The rachidian tooth is broad, with a large, sharp central cusp and six or more small denticles on each side; the imner lateral tooth is large, strongly curved, with a sharp terminal cusp, and several small lateral denticles on the onter margin; the two outer rows are much alike; these teeth are long, slender, curved, with sharp tips. On each side of the cavity of the proboscis there is a chitinons patch, closely covered with small chitinous scales or denticles, which are closely crowded together and imbricated; the largest of these denticles are flattened and have their free end lanceolate and acute.

Benthodolium abyssorum Verrill and Smith, sp. nov.
Plate XXXI, figures $12,12 a, 12 b$.
Shell large, thin, stont, with inflated whorls, abd a short, obtuse spire. Whorls five, below the muclens, mpidly increasing, evenly
rounded, strongly convex, the last whorl occupying more than onehalf the length of the shell. Suture deep, well impressed, the whorls rising abruptly from the suture produce a well rounded shoulifer. Aperture broadly ovate; onter lip thin, sharp, with a nearly evenly rombded outline, the edge receding a little at the shoulder and slightly everted near its junction with the whorl ; inner lip continned as a thin lustrous coat of white cumel on the previous whorl, becoming raised, sharl, and slightly sinnous in the umbilical region, and turning outward so as to nearly conceal a narrow umbilical chink. Columella short, not much thickened, with a slight sigmoid curvature. Canal very short, and wide, scarcely projecting beyond the margin of the outer lip, with which it is directly continuons. Sculpture consists of numerous small, but very distinct, elevated, spiral cinguli, somewhat unequal in size, but rather evenly spaced, and separated by much wider concave interspaces (about $1^{\text {mm }}$ broad), crossel by rather conspicuous and regular, raised lines of growth, which also cross the ribs. There is no indication of longitudinal ribs. Epidermis distinct, thin, brownish yellow, not hairy. The apical whorls are eroded. Operculum spiral, large, thin, ovate, inequilateral; the outer edge evenly rounded; the inner edge not so strongly convex and slightly simons posteriorly; the anterior edge slightly emarginate, where the spiral portion turus inward. The anterior portion shows a distinct spiral whorl, having its center a little distance from the anterior borter, and the lines are eurved radially from the center:

Color of the shell white and translucent beneath the yellowish epidermis. 'The operculnm is horm-color, translucent.

The only specimen in the collection is a female. The tentacles are large, broad, stout, rapidly tapering to the acmminate tips. No eyes can be detected in the preserved specimen.

Length, 45^{mm}; brealth, 35^{mm}; length of spire, 18^{mm}; length of aperture, $37^{m m}$; its breadth, 18^{mm}; length of operculum, $19^{\text {m"m }}$; breadth, 14^{mm}.

Station 2098, N. lat. $37^{\circ} 40^{\prime} 30^{\prime \prime}$, W. long. $70^{\circ} 37^{\prime} 30^{\prime \prime}$, in 2221 fathoms, one living specimen ($\mathrm{N} 0.35,273$), and station 210 , N . lat. $37^{\circ} 50^{\prime \prime}$, W. long. $733^{\circ} 03^{\prime} 50^{\prime \prime}$, in 1395 fathoms, one deal specimen (No. 35,364).

Trichotropis inflata Friele.
Gatalog norweg. Nordmeer-exp. Spitzbergen gefund. Mollnsken, p. 275, 1879.
Shell :mall, ovate, with the last whorl large amd somewhat ventricose, spire small, tureted, with a rather acnte apex and a strongly
marked, somewhat impressed suture. Whorls four, increasing rapidly, rising abruptly from the suture to the strongly convex shoukler, and somewhat flattened at the periphery. The apical whorl is not very small, but rather prominent. The borly-whorl forms much the larger part of the shell, and is rather evenly ronnded in the middle, strongly produced anteriorly, and narrowed gradnally to the tip of the short canal. The sculpture consists of very thin, raised, rather close and regularly spaced revolving cinguli, of which there are about twelve on the penultimate whon; on one specimen one of these is a little more prominent than the rest. Fine, close, regular, and distinctly raised Hexuons lines of growth also cover the whole surface of the lower whorls, crossing both the cinguli and their interstices, but most distinctly the latter; these lines of growth are much finer and more momerous than the cinguli ; the two upper whorls are smooth. Aperture somewhat crescent-shaped, not very broad, pretty evenly rounded on the ontside, prolonged anteriorly into a short rudimentary canal, and with the inner margin rather flexuous, the colmmella-margin being straight or a little convex in the middle, while there is a marked excurvature in the nmbilical region; the lip is thin, simple, but striated within by revolving lines which show through. The canal is not differentiated from the aperture by any constriction, and ents in a simple and slightly prominent notch; the columella-lip is reflexed over the umbilicus, nearly concealing it in a front view. The nmbilicns seen in an end view is narrow and deep.

Length, 6^{mm}; breadth, $3 \cdot 8^{\mathrm{mm}}$; length of body-whorl, 5^{mm}; length of aperture, 3.5 mm ; its breadth, 1.8^{mm}.

Station 2084, N. lat. $40^{\circ} 16^{\prime} 50^{\prime \prime}$, W. long. $67^{\circ} 05^{\prime} 15^{\prime \prime}$, in 1290 fathoms. Two living specimens (No. 38,077).

The original specimens described by Friele were from 223 and 656 fathoms, and from 650 fathoms, off Tromso.

This shell agrees closely with the description and figure quoted. It seems to me very doubtful whether it really belongs to the genus Trichotropis. It may prove to belong to Admete.

Cingula brychia Verrill, sp. nov.

Plate XxXif, figure 9.

Shell brown, small, rather thick, short and stont, composed of about three rapidly increasing whorls, which are crossed by strong transverse ribs, but are destitute of spiral lines. The apical whorl is relatively rather large, regularly rounded, making a small, obtuse

Trans. Conn. Acad., Vol. Vi.
23
May 26, 1884.
tip. The second whorl is crossed by about twelve rather prominent and obtuse ribs, which are most elevated at the periphery; their interspaces are concave and wider than the ribs. On the last whorl, which forms the greater part of the shell, there are about fourteen ribs, most prominent on the shoulder, fading out a short distance below the periphery, and also disappearing close to the suture; the base is somewhat produced and is destitute of sculpture. There is a minute umbilical chink or groove, partially concealed by the edge of the lip. The suture is strongly impressed. Aperture rather large, obovate, broadly rounded posteriorly, narrowing nearly to a point anteriorly, at the junction of the outer lip and columella; the outer lip is rather thin, without a varix, strongly convex at the shoulder, and a little produced anteriorly, where it forms a distinct, prominent angle at its junction with the columella-margin, which is straighter than in most species, though somewhat excurved. In some specimens there appears to be a rudimentary notch at the anterior angle of the lip, somewhat like that of Trichotropis and Litiopa. The inner lip is usually not continuous on the body-whorl. Color dark reddish brown, varying to light brown and brownish yellow, frequently more or less coated with iron oxide.

Length, $2 \cdot 3^{\mathrm{mm}}$; breadth, 2^{mm}; length of aperture, 1^{mm}.
Station 892, in 487 fathoms (No. 38,021), 1880 ; five living, one dead, station 1093 (No. 38,086), in 349 fathoms, 1882 ; dredged by the steamer Fish Hawk.

Stations 2072 (No. 38,089) ; 2076 (No. 38,073) ; 2078 (No. 38, 074); and 2084 (No. 38,099), in 499 to 1290 fathoms, 1883, steamer Albatross.

In color and general appearance this species resembles the young of C. Tan-Mayeni. It is, however, a shorter and stonter species, and is destitute of the spiral lines, which render the ribs on the shoulder conspicnously nodulous in the latter.

Cingula syngenes Verrill, sp. nov.

Plate XXXif, figure 11.

Shell small, white, long-ovate, with a regularly tapering, blunttipped spire; a strongly impressed suture; and four to five evenly convex whorls, which are rather finely and regularly reticulated by transverse ribs and revolving cinguli of nearly equal strength, except on the base, which has only the spiral senlpture. Apical whorl relatively large, obtusely rounded, nearly smooth; on the second turn a
few revolving lines appear; the lower whorls are crossed by about fourteen to sixteen, regular, rather elevated, but not broad, romnded ribs, which are nearly straight and separated by pretty regular interspaces, usually about twice as broad as the ribs. On all exeept the last whorl, the ribs extend from suture to suture; on the last whorl they fade ont a little below the periphery. The whole shell, except the uucleus, is eovered with well developed, rather thin, revolving cingali, which are about the same height as the ribs, though rather thinner, but in crossing the ribs they do not form nodules, so that the surface is eancellated with a regular net-work, of which the meshes are squarish, or elongated in the direction of the revolving lines, but below the periphery of the last whorl the cinguli become stronger and the ribs fainter, while the greater part of the base is occupied with cinguli only, which are here rather closely crowded. On the penultimate whorl there are about six or seven cinguli; on the body-whorl there are sixteen to nineteen, of which eight or nine are posterior to the lip, and six or seven anterior to it. The surface is also marked with very fine revolving striæ, visible under the microscope. Umbilicus none. Aperture rounded or very broadly ovate, usually slightly narrowed and obtusely angled posteriorly; broadly rounded and slightly flaring in front; outer lip sometimes thin and sharp, sometimes distinctly thickened, but withont a varix; anteriorly it is slightly effuse, and sometimes forms there a faint rounded angle; the inner lip is continnons, forming a regular curve, but not quite so convex as the outer margin; the portion in contact with the body-whorl has a free edge, and in the umbilical region the margin is a little reflexed, often leaving a slight furrow beneath it.

Length, 3^{mm}; breadth, $1 \cdot 6^{\mathrm{mm}}$; length of aperture, $1 \cdot 2^{\mathrm{mm}}$; its breadth, $\cdot 8^{\mathrm{mm}}$. Other specimens are somewhat more slender than the one measured.

Station 2109, in 142 fathoms, oft Cape Hatteras, N. lat. $35^{\circ} 14^{\prime} 20^{\prime \prime}$, W. long. $74^{\circ} 59^{\prime} 10^{\prime \prime}$. Several specimens, living and dead (No. 35,453).

This species belongs to the same group as C. arenaria, C. curinatu, and C. areolata of our northern coasts. From all these it differs in having a finer and more regular sculpture, both the ribs and revolving lines being much more mmerous and more regular. Nor do either of the northern species possess the microscopic striæ. In this last eharaeter it resembles C. harpa and C. leptelea; but C. harpa is a stonter shell, with much finer and more numerous revolving lines, which do not give it a cancellated appearance. C. leptalea is
entirely destitute of the transverse ribs. The present species also resembles C. abyssicola of northern Europe, as figured by G. O. Sars, but the latter has a stronger senlpture, with fewer revolving lines, and the outer lip has a distinct varix. C. Jeffreysi differs in nearly the same manner.

Cingula leptalea Verrill, sp. nov.
Plate XXXII, figure 10.
Shell of morlerate size, thin, slender, composed of four very convex whorls separated by a deep suture, and with small spiral cinguli and microscopic, wavy, revolving lines. The apical whorl is rather large, smooth, regularly coiled, forming a small rounded apex. The lower whorls are covered with small, rounded cinguli, of which there are from eight to ten above the suture, on the penultimate whorl, those just below the suture becoming indistinct; on the borly-whorl there are about twenty; they are separated by concave interspaces of somewhat greater width, the spaces becoming greater on the upper part of the whorl. Both the interspaces and cinguli are corered by very delicate, microscopic, raised lines, which are bent into minute, close waves, giving the whole surface a microscopically vermiculated appearance; of these wavy lines there are mostly from four to six in the interspaces and four or five on the cinguli. The whorls are crossed by raised lines of growth, which in some places are pretty regular and nearly as prominent as the cinguli, which they cross so as to produce a finely retieulated seulpture; this is seen most frequently near the shoulder, but is not constant, often fading out both near the suture and anteriorly: There are also more or less distinct microscopic lines of growth which cross the minute revolving lines, but are less distinct than the latter. The aperture is rather large, regularly orate; the outer lip is a little thickened, but without a varis; it is regularly arched exteriorly and a little effuse in front; the imer lip is well developed and continnons, though closely adherent to the body-whorl. There is no mombilicus, but a small chink is formed by the eversion of the colmella-lip. Color, in alcohol, pale yellowish white with a tinge of greenish, and translucent; when dry, white and opayue.
Length, 3^{mm}; brealth, $1 \cdot 8^{\mathrm{mm}}$; length of aperture, 1^{mmu}.
Station 2072, N. lat. 4$]^{\circ} 53^{\prime}$, W. long. $65^{\circ} 35^{\prime}$, in 858 fathoms (No. 38,060). One living specimen.

This species- is easily distinguished by the peenliar, elegant, spiral microscopic lines, combined with the mmerons spiral cinguli, visible under a lens. There are no regular transverse ribs.

Cingula apicina Verrill, sp. nov.

Plate XXXiI, figure 8.

Shell conical, rapidly tapering to a very acute, sub-stiliform tip. Nuclear whorls about four, smooth, dark brown; the first is minute and obliquely incurved; the others very gradually increase, so as to form a slender, somewhat stiliform nuclens, below which the normal whorls increase much more rapidly. The normal whorls, of which there are five, are very convex, evenly rounded, with a strongly impressed suture, and everywhere crossed by fine, distinct, obliquely raised, slightly flexnoms lines of growth, some of which often appear as distinct riblets, but without any distinct spiral lines. Aperture nearly round, faintly angulated, a little in advance of the middle, by a very slight and rather indistinct ridge, which surrounds the base near the periphery. Columella-margin thin and somewhat reflexed over the umbilical depression; imner lip short, formed by a thin layer of enamel closely atherent to the body-whorl. Umbilicus small and deep, partially concealed in a front view by the reflexed edge of the lip, but distinctly visible in an end view. Epidermis thin, elosely adherent, light horn-color, without much luster, and having a distinctly fibrous appearance, under a lens. Shell grayish white. Opercnlom nearly round, very thin, pale horn-color, with very indistinct subspiral lines of growth.

Length, $7 \cdot 6^{\mathrm{mm}}$; breadth, $5^{\text {mm }}$; length of body-whorl and canal, 5^{mm}; length of aperture, $2 \cdot 5^{\mathrm{mm}}$; its breadth, 2^{mm}.

Station 2041, N. lat. $39^{\circ} 22^{\prime} 50^{\prime \prime}$, W. long. $68^{\circ} 25^{\prime}$, in 1608 fathoms. Steamer. Albatross, 1883 (No. 38,070).

A single living specimen of this species was obtainet. The animal, in alcohol, has rather short, stont, tapering tentacles, and is apparently without eyes. Its generic affinities are doubtful. It has some resemblance in sculpture and appearance to Lacunct glacialis, but the latter is a stonter shell, with a less distinct mmbilicus, and withont the pecnliar stiliform nucleus seen in the present species. In the last character it approaches Litiopa, but it has not the noteh, or rudimentary canal, characteristic of that genus.

Cithna tenella, var. costulata Jeff.
Lacunu tenella Jeffreys, Brit. Conch.. p. 204, pl. 101, fig. 7.
Cithna tenella, var. costuluta Jeffress, Proc. \%ool. Soc. London, 1883, P. 110.
This species was taken at station 2038, N. lat. $38^{\circ} 30^{\prime} 30^{\prime \prime}$, WV^{\prime}. long. $69^{\circ} 08^{\prime} 25^{\prime \prime}$, in 2033 fathoms (No. 38,069). One living specimen.

It has been taken on the European coasts at several localities, in 114 to 2050 fathoms, from off the Faroe Islands to the Azores and Mediterrancan. It was taken off Pernambuco, Brazil, and east of Japan by the Challenger (Jeftireys). It occurs in the Pliocene of Sicily and Calabria, according to Jettreys.

Cithna cingulata Verrill, sp. nov.

Plate NXXII, figlre 7.
Shell small, rather solid, depressed, with a low spire, and angulated, spirally striated whorls. Base broad, convex; nmbilicus small and deep. The muclens is relatively large, nearly smooth, glossy, deep chestnut-brown, composed of about three rapidly increasing whorls, the last of which is finely spirally striated: the apical whorl is minute and regularly coiled, not prominent; the change from the mucleus to the normal whorls is abrupt. Aside from the mucleus, there is rather more than one whorl, which increases rapidly and constitutes the bulk of the shell; this whorl is very convex at the periphery and more or less distinctly bicarinate; one carina surrounds the periphery; the other at a short distance above this forms a slight, rather indistinct shonder; the band between the upper carina and the suture is slightly convex and joins the preceding whorl nearly at right angles, bending inward at the suture so as to form a narrow and rather deep sutural groove. The whole surface, below the nuclens, both aboye and below, is coverel by mumerons, pretty regular, close, spiral cinguli, separated by grooves of about the same brealth on the periphery, but more erowded on the base; the surface is also ronghened by fine and minute lines of growth. On the last whorl there are four or five cingnli between the carine. The umbilicus is regular, somewhat fun-nel-shaped, narrow and deep. The aperture is rather large, roundish, with the anterior and inmer borders slightly patulons, and the outer border expanded and more or less angulated at the carine; the imer lip is continnous, with a distinct elge along the narrow part, which is attached to the pillar. Columella-margin somewhat that-
tened and a little effuse anteriorly. Color white, below the brown mucleus.

Height, $2 \cdot 2^{\mathrm{mm}}$; breadth, $3 \cdot 6^{\mathrm{mm}}$; breadth of aperture, 2^{mm}.
A young speeimen, preserved in alcohol, and apparently of the same species, has a distinct epidermis, bearing small hair-like processes, most prominent on the earinæ. Its muclens is somewhat smaller than in the specimen described ahove, but has the same form and eolor.

Station 2076, N. lat. $41^{\circ} 13^{\prime}$, W. long. $66^{\circ} 00^{\prime} 50^{\prime \prime}$, in 906 fathoms (No. 38,101) ; station 2084, N. lat. $40^{\circ} 16^{\prime} 50^{\prime \prime}$, W. long. $67^{\circ} 05^{\prime} 15^{\prime \prime}$, in 1290 fathoms (No. 38,105). The young aleoholie specimen referred to is from station 2043, in 1467 fathoms, N. lat. $39^{\circ} 49^{\prime}$, W. long. $68^{\circ} 28^{\prime} 30^{\prime \prime}$ (No. 38,104). Albatross, 1883. One specimen was taken at each locality.

Cithna (?) olivacea Verrill, sp. nov.
Plate XXIX, figure 5.
Shell thin, translucent, naticoil, as broad as high, sulgglobular, with about four rapidly expanding, rounded whorls. Suture distinct, scarcely impressed. Surface smooth, glossy, covered with a greenish yellow, thin, elosely adherent epidermis. The upper whorls are obscured by a thin, smooth, chitinons deposit, which also fills the suture; beneath this the nuclear whorls appear to have a delicate sculpture, consisting of two or more revolving cinguli erossed by delicate lines of growth. Aperture very broad, ovate; the outer lip is evenly rounded, forming nearly a semicircle. Columella-lip nearly straight, a little excurved in the middle, with the edge everted and a little thickened, slightly effuse, and forming a distinct, rounded angle and a rudimentary notch, where it joins the outer lip. The inner lip is contimued from the columella-margin to the outer lip by a very thin smooth deposit of enamel, without a free edge. Spire very short, apex obtuse. Umbilicus wanting.

Length, 4^{mm}; breadth, 4^{mm}; length of aperture, 2.25^{mm}; breadth, 2^{mm}.

Off Martha's Vineyard, station 1154, in 193 fathoms, 1882. An additional specimen from station 2084, in 1290 fathoms, 1883.

Both specimens were without the animal, though fresh in appearance. The affinities of this shell are, therefore, very doubtful.

Family SEGUENZID A.

The beantifinl deep-sea shells incluted in the gemus Sequenzia, with the closely allied forms (Basilissa, etc.), present several remarkable characters which onght, certainly, to entitle them to rank as a distinct family.

The shell is trochiform, with elegant revolving and transverse raised sculpture, and usually translucent, with more or less pearly luster, when fresl. Umbilicus open or closed. Aperture irregular, usually with a marked posterior sinus, a short or rudimentary canal, or anterior sinus, and sometimes with two anterior sinuses. Operculum thin, rounded-ovate or car-shaped, with a subeentral nueleus and fine concentric lines. Jaws ovate, with tesselated surface and denticulaterl edge. Odontophore (in Sequenzia) minute, T'anioglossate; the central tooth small, with one denticle; the inner laterals smaller, with curved marmed tip; the two onter laterals slender, sharp, strongly curved.

By Jeffreys this group was placed near Solurium (Ptenoglossa); by Watson in the Trochicle (Rhiphiloglossa).

It has really no affinity with either of those groups, lout belongs to the Tenioglossre. It seems more nearly related to Aporrhais and allied forms, than to any of our other shallow water groups.

Seguenzia formosa Jeffreys.
Jeffreys, Proc. Roy. Soc. London, vol. xxv, pp, 200, 201, 1876 (wood-cuts); Anu.
Mag. Nat. Hist., p. 319 , April, 1876 .
Boog Watson, Mollusea Challenger Exp., Part III, Journ. Linn. Soc., vol. xiv, p.
$587,1879$.
Plate XXXI, figures $14,14 a, 143$.
Several living specimens were dredged by the Albatross in 1883, in 1290 to 2033 fathoms. Station 2037 , N. lat. $38^{\circ} 53^{\prime}$, W. long. 69° $23^{\prime} 30^{\prime \prime}$, in 1731 fathoms, one young specimen (No. 38,232) ; station 2038, N. lat. $38^{\circ} 30^{\prime} 30^{\prime \prime}$, W. long. $69^{\circ} 08^{\prime} 25^{\prime \prime}$, in 2033 fathoms, two living speeimens (No. 38,078) ; station 2084, N. lat. $40^{\circ} 16^{\prime} 50^{\prime \prime}$, W. long. $67^{\circ} 05^{\prime} 15^{\prime \prime}$, in 1290 tathoms, two living specimens (No. 38,247).

These specimens show some variation in sculpture and in the presence or alsence of a small umbilical perforation or chamel.

In the typical form of formose the boty-whorl is surrounded by three principal carine, which are prominent and rather sharp. One of these, around the periphery, is coincident with the posterior angle of the aperture, and, therefore, with the suture, which it usually con-
ceals; loth above and below this, at about equal distances, there is another less prominent carina, the lower one defining the basal area; the upper one is about midway between the median carina and the suture. The intervals between these carine are broadly concave and crossed by numerons pretty regularly spaced, thin, raised and curved riblets; those between the upper carina and the suture have their concave side toward the aperture and terminate posteriorly in a small, slightly prominent lobe or crest in crossing the sutural carina; those in the two peripheral zones have their convex side toward the aperture and do not cross the carine. On the base there are about seven to nine rather prominent revolving cinguli, besides the carina already referred to; the intervals between these are coucave and variable in width, and are crossed by mmerous, small, oblique riblets. The surface of the whorls between the riblets is covered by fine revolving lines, visible with a lens. The umbilicus is represented only by a narrow spiral groove or chanmel, nearly concealed by the strongly recurved or reflected margin of the coln-mella-lip, and bounded outwardly by a spiral ridge. The aperture is rather large and angulated, or lobed, with a deep, rather broad posterior sinns, which is deepest just above the upper carina, where the corresponding riblets are most strongly excurved; below this the outer lip is thin, and bends ontward and inward, corresponding to the external carine and their interspaces; below the periphery and opposite the most convex part of the base the outer lip bends outward and shows another shallow sinus; there is also a small sinns or rudimentary canal at the junction of the lip with the extremity of the columella, which terminates in a small, somewhat prominent angle. The columella-margin is strongly spirally twisted, much excurved opposite the umbilical region, beyond which it curves strongly forward and outward, forming there a small, prominent, sometimes slender tooth, which is often broken. The operculum is ear-shaped or broad-ovate, with an emargination on one side, thin, translucent, pale yellow, with a very delicate, concentric structure. The muclens is sub-central ; around it are nmerous thin, close, concentric lines, most distinct about midway between the center and margin; the onter part is transparent and shows no distinct lines; the muscular attachment is ovate, not rery large, and excentric to the center.

Jaws thin, brown, irregularly ovate, the outer half covered with small tesselated elevations, becoming more prominent, blunt or spatnate at the margin.

Odontophore very small and slender; median tooth minute, thin, with the tip bent forward and ending in a minute central denticle: inner laterals, with the tip small, curved forwarl, flat, unarmed, almost half as wide as the median; outer laterals long, slender, very acute, strongly curved.

Length of the largest specimen, $5^{\text {man }}$; breatth, $4^{\text {mm }}$; breadth of aperture, 2^{mm}.

At station 2084, two younger specimens were obtained. These, while agreeing with the larger specimens in form and sculpture, have a narrow but deep umbilical perforation, which is only partially concealed by the reflexed columella-margin. One specimen has five, the other six spiral carine on the base. The colnmella-margin is thin and shows only a small tooth at its extremity. The mucleus, as in the typical form, is small, smooth, turned up obliquely, and somewhat prominent. The presence of the umbilical perforation seems to be due only to immaturity.

Seguenzia formosa, var. nitida Verrill, nor.
This shell agrees nearly in form and size with typical s. formosn, but is thinner, more translucent, with the spire a little less acnte, and with more delicate sculpture. It differs chiefly in having more mumerons and closer spiral lines on the base, the mmber below the median carina of the whorl being ten to twelve, the intervals between them diminishing as they approach the umbilical region. Our specimens have a narrow, spirally twisted, deep umbilical perforation and chamel, mostly concealed in a front riew by the reflexed edge of the colmmella-lip; the mombical pore is bortered extemally by the imemost spiral ridge. The columella is much excurved at base, strongly spirally twisted, and projects at the end in a somewhat prominent, excurved angle, forming a small canal, hat has no distinct tooth on the inner margin like that seen in the typical S. formosa, but this may be due to injury; the onter lip is more regularly convex and has a less developed posterior sinus. The two principal carina on the whorls are elevated and rather prominent, with the edge a little thickened, often obtuse and finely spially lined, not interrupted by the transverse riblets, which fatle out at a littie distance below the crest, except on the sutural earina, which they cross. The riblets are rather thinner, more flelicate, and more numerons than in the typical S. formosa, and are less elevated. They are also more strongly curved and decidedly closer together, especially those between the two peripheral carine. There is, also,
in some cases, a distinct, subsutural raised line. The fine spiral lines between the carine are rather more regular and distinct than in the typical form. The muclear whorl is a little prominent and turned up, rounded, smooth, glossy, and rather larger than in the latter.

Length, 5^{mm}; breadth, 4^{mmn}; length of aperture, $2 \cdot 3^{\mathrm{mm}}$; its breadth, 2^{mm}.

Station 2038, in 2033 fathoms, with S. formosa, three living examples (No. 38,078).

Seguenzia eritima Verrill, sp. nov.
Plate XxXi, figure 15.
Shell thin, delicate, stont-conical, with a rather high, regularly tapered, acute spire, a narrow, deep umhilieal pore, and a somewhat produced base, which is sculptured by numerous (15 to 20) sinall, spiral cinguli.

Whorls seven, rapidly increasing, strongly angulated and earinated in the middle. Suture distinct, very slightly impressed, bordered below by a small, slightly raised, spiral ridge; from this the wide subsutural band rises, at an abrupt angle, to the carina of the shoulder, forming a flat or somewhat concave upper slope on the whorls. On the spire the shoulder is situated at aboat the middle of the whorls, and the periphery, below the carina, is thattened and descends nearly perpendicularly to the suture. On the last whorl a second sharp carina surrounds the periphery, the space between the two being a little greater than that above the first earina, the peripheral band being here somewhat concave. Below the peripheral carina the base is covered by fifteen to twenty smaller and distinctly raised, thin cinguli, of which the two or three outermost are but little smaller than the carine, and separated by spaces two or three times their own breadth; near the umbilicus the spirals again become a little stronger and wider apart, while over the greater part of the base they are slender and very close set, the grooves between being scarcely as wide as the lines; midway between the center and ciremmference there is a low, ill-defined spiral ridge, corresponding to the anterior sinus of the lip; the imermost spiral line forms a thickened border for the umbiliens. The spaces between the carinæ are erossed by numerons, very delicate, Hexuous, raised riblets, which are elose and very regularly spaced, and rather more prominent on the last whorl than on the spire; those on the subsutural
band, which are closer together than the others, are excurved in the middle, bending abruptly forward to join the shonlder-carina, which they do not cross, nor do they form prominences on the sutural carina; those of the peripheral band curve in the opposite direction, their convex side being toward the aperture. In the narrower spaces between the onter basal cinguli similar riblets are also present, but are here oblique, finer, and less distinct; the spaces between the carine are also marked by fine, raised spiral lines, visible with a lens, which do not interrupt the riblets; often some of these, near the median carina, are larger than the rest. The apical whorl is a little prominent, small, regular, smooth and glassy. The suture often appears slightly channcled, when the sutural carina is a little removed from it, owing to the fact that the peripheral carina of the previous whorl is nearly coincident with the suture. The carina defining the shoulder often appears double or grooved at its summit, on the last whorl. The umbilicus is narrow, but deep and spirally twisted, being more or less eneroached upon by the incursed colu-mella-edge. The aperture is irregularly angulated and somewhat three-lobed, with two distinct, somewhat produced, narrow sinuses in front; a deep, rather wide notch or posterior sinus corresponding to the subsutural band; and a strongly excavated, rounded sinus at the base of the columella. The outer lip is thin, sharp, angulated at the terminations of the carinæ, and projects strongly forward at the periphery and bends ontward in the form of two very short, rather narrow, rounded canals anteriorly. These are nearly equal in size, the outermost corresponding to a slight convex ridge on the outer part of the base, the inner one corresponding to the termination of the colnmella-margin ; the latter projects forward as a rudimentary canal. The columella-margin is short, somewhat thickened, rery strongly spirally curved, and much excurved near its junction with the body-whorl, opposite the umbilicus, beyond which it bears a small, slightly prominent, obtuse tooth. Color transhicent white, with a pearly luster or iridescence in fresh specimens. Operculum thin, pale yellowish horn-color.

Length, $4 \cdot 5^{\mathrm{mm}}$; breadth, 3^{mm}; length of body-whorl and aperture, 3^{mm}; breadth of aperture, $1 \cdot 7^{\mathrm{mm}}$.

One living specimen from station 2038 , N. lat. $38^{\circ} 30^{\prime} 30^{\prime \prime}$, W. long. $69^{\circ} 08^{\prime} 25^{\prime \prime}$, in 2033 fathoms (No. 38,092), the figured type; four specimens from station 2084, N. lat. $40^{\circ} 16^{\prime} 50^{\prime \prime}$, W. long. 67° $05^{\prime} 15^{\prime \prime}$, in 1290 fathoms (No. 38,249), one living ; station 2043, in 146 t liathoms, one dead (No. 38,269).

In size, form, and the general character of the sculpture this species resembles S. formosu J., from which it differs mainly in the more delicate character of the sculpture, less acute carinæ, finer and closer riblets, and much more mumerous and finer lines on the base. The typical form of S. formose is destitute of an umbilicus, although a narrow one appears in some of the small specimens. This species seems to be a thinner and more delicate shell than any of the varieties of S. formosa, and has a more convex base and a smaller muclens, but a less acnte spire. From S. carinata Jeff. and S. ionica Watson it differs in having a higher and more acute spire, and decidedly in the sculpture and the narrowness of the umbiliens, which in this form is a deep, narrow, spiral perforation. I have seen no description of S. elegrans Jeff., other than the statement that it is umbilicated.

Piliscus commodus (Middendorfi.)
Pilidium comnorlum Middentorff, Beit. Malacozoologia Rossica, pl. 17, figs. 4-11, 1847.
? Pilidium radiatum M. Sars: G. O. Sars, Moll. Reg. Arct. Norvegixe, p. 144, pl. 8, figs. $6, a-d, \mathrm{pl} . \mathrm{r}$, figs. $1, a, b$ (dentition).
Pilidium commodum Friele, Nyt. Mag. Naturvid., xxiii, 1877, [sep. copy, p. 2]. pl., figs. $2,2 a$, dentition.
Shell very thin, translucent, bomet-shaped, with the anterior slope rising gradually to the apex, which recurves and overhangs the posterior margin. Aperture very large, broad-ovate, a little narrowed posteriorly, broadly romded in front. Apex prominent, sitnated near the posterior end, curved backward and inward, and twisted obliquely to the right; the extreme apex is rather large, bluntly rounded, incurved, and appressed against the body of the shell posteriorly; this nuclear portion expands at first only gradnally, and appears to be minutely punctate under a lens. The body of the shell is covered with rather conspicuous, close, raised lines of growth, but is destitute of any radiating lines. The whole surface, except the apex, is covered with a thin, fibrous, concentrically corrngated, yellowish white epidermis, which easily peels oft when dried. Margin very thin and sharp, flaring, especially in front. Internally the eavity of the shell corresponds closely with the exterior form, the apical portion ruming up into the nuclens of the shell and becoming snbspiral. Muscular scars very indistinct. Posterior slope abrupt, almost perpendicular, and somewhat concave in a side view, and overarched by the projecting apex, which is situated rather to the
left of the central line, so that the shell is a little one-sided, with the lateral slope on the right side longer and more gently sloping than on the left.

Length of shell, across aperture, $20^{\text {min }}$; greatest breadth, $18^{\text {min }}$; height, 9^{mm}; front margin to apex, 20^{mm}.

The animal resembles that of Capmus IFongaricus, but the muscle by which it is united to the shell is far less developed. The tentacles are large, stont, blunt, with well developed eyes on a basal swelling. There are two large phmose gills situated in a large cervical cavity and attached on the left side, but extending entirely across the back of the neck, so that the tip of the larger gill is visible back of the right tentacle. The foot is rather smali, in the alcoholic specimen, and has the anterior comers produced into short obtuse anricles. The dorsal part of the animal is moderately convex and does not show, in the preserved specimen, a smbspiral form corresponding to that of the shell. The apical portion contains a large eluster of ova, which is distinctly visible through the integument.

Station 2062, near Le Have Bank, off N. S., on rocky hottom in 150 fathoms. One living specimen ($\mathrm{N} 0.35,274$). It was associated with Primmoa reseda and other arctic forms.

This species has not been previonsly recorded as living in the North Atlantic, sonth of Iceland, muless P. radiatum Sars, from West Fimmark, be a varicty of it. It was originally deseribed from Okhotsk. liriele records it from off Iceland, in 290 fathoms. It occurs in the post-plincene at Uddevalla, and in the Coralline Crag of England (as C'upulus fillu.i' S. Wood, t. Jeftireys).

GYMNOGLOSSA.

Eulimella lucida Verrill, sıl. nor.
Plate IXXit, flicires 3 , 3 a.
Shell rather large for the gems, long and slender, with a tall, regmarly tapered, acute spire, composed of about eleren whorls besides the melens, which is small, prominent and strongly upturned.

The whorls are much flattened and but little convex. The suture is distinct, but searcely at all impressed, especially on the upper half of the spire, and not very oblique. The surface is everywhere very smooth and polished, with a very brilliant laster, withont any somplture whatever, and with exceedingly indistinet lines of growth. The aperture is almost regularly ovate, narrowed posteriorly, where
it ends in a slight sutural notch ; anteriorly it is evenly and obtusely rounded. The onter lip is sharp, evenly arched, and projects considerably forward in the middle; in front it is somewhat produced and flaring, but passes into the colmmella-lip in a regular curre; the col-umella-lip is regularly excurvel, with the outer margin somewhat everted. There is no umbilicus. Color transhent pinkish white.

Length, 8^{mm}; breadth, $2 \cdot 3^{\mathrm{nmm}}$.
Station 2038, N. lat. $38^{\circ} 30^{\prime} 30^{\prime \prime}$, W. long. $69^{\circ} 08^{\prime} 25^{\prime \prime}$, in 2033 fathoms. One living specimen.

This species is closely related to E. charissa, but it is larger and stouter, with a decidedly larger mucleus, and with more flattened whorls and a less distinct suture, and it has a smaller number of whorls in the same length. It is remarkable for its smootlmess and brilliant polish, in this respect resembling Eulimut.

Eulimella charissa Verrill, sp. nov.

Plate XXXII, figures $4,4 a, 4 b$.

Shell small and delicate, tramslncent white, very slemler, with the spire attennated toward the uper end and very acute, composed of about cleven whorls.

The apical whorl is very small, strongly upturned and reversed; the sncceeding whorl is scarcely larger. The suture is slightly but distinctly impressed and not very oblique. The whorls are moderately convex in the middle, thongh somewhat flattened. The surface is nearly smooth and brilliantly polished, without scnlpture, except fine, microscopic, and rather indistinct, flexuons lines of growth, nsually most evident close to the suture. Aperture orate, narrowen to a point posteriorly, where it terminates in a shallow, sutural notch; the outer lip is moderately and regularly consex, projecting forward in the middle, slightly produced and a little flaring in front; it blends with the colnmella-lip in a regular curve; the columellamargin is regularly excurved, and forms a sinnous curve with the edge of the body-whorl. No umbilicus. Color transhcent white, sometimes with a tinge of pinkish.

Length, $5 \cdot 6^{\mathrm{mm}}$; breadth, $1 \cdot 8^{\mathrm{mm}}$. Other specimens are somewhat more slender than the one measured.

Station 2038, in 2033 fathoms, with the preceding species. Four specimens, three of them living.

This species is very similar to the preceding, but is distinguished by its smaller size and much more slender spire, having a greater
number of whorls in the same length, and by the smaller apical whorl. 'The whorls are also somewhat more convex and the suture more impressed. In one specimen the spire is somewhat crooked.

Eulimella nitida Verrill, sp. nov.

Plate XXXil, figure 5.

Shell smooth, polished, rather large for the genus, moderately elongaterl, with a tall, regularly tapering spire, of more than eight whorls (apex broken), separated by a well defined, somewhat impressed, rather oblique suture.

Whorls moderately and regularly convex. Last whorl much larger than the preceding ones, with the base produced. Aperture long-ovate, much narrowed posteriorly, and terminating in a narrow, rather deep sutural notch, regularly arched and somewhat flaring anteriorly; onter lip thin, sharp, receding in a rather deep notch where it joins the previous whorl, from which it projects forward in a rather strong regular curve, most prominent in the middle, from whence it recedes again anteriorly to the front margin, which is somewhat produced and distinctly effuse. The columella-margin is somewhat excurved, and joins the anterior margin withont forming an angle. There is no umbilicus. The surface is everywhere smooth and polished, showing only very faint and indistinct lines of growth. The sutural line often appears donble, owing to the inner edge of the suture showing through the transhucent shell.

Length of the specimen, lacking the nuclear whorls, $6.5^{\text {man }}$; breadth, 2^{mm}.

Station 2038, N. lat. $38^{\circ} 30^{\prime} 30^{\prime \prime}$, W. long. $69^{\circ} 08^{\prime} 25^{\prime \prime}$, in 2033 fathoms. One specimen.

This species appears to be elosely related to E. lucidu, though the absence of the nucleus prevents a close comparison. It differs in the greater convexity of the whorls, in the more obligue and more impressed suture, the longer body-whorl, more produced anteriorly, and the narrower and more elongated aperture, which is more eftuse anteriorly. From E. churisse it differs still more decidedly in most of these characters, and the latter is also a smaller and much more slender species, with more numerous whorls.

Eulimella (or Menestho) lissa Verrill, sp. nov.
Plate XXXII, figure 6.
Shell small, white, polished and somewhat lustrous, slender, somewhat obelisk-shaped, composed of abont eight flattened whorls, without any sculpture. Apical whorl very small, abruptly uptmrned, its diameter only abont half that of the next whorl.
'The sneceeding whorls increase rapilly at first, but the later ones less rapidly, so that the shell has a somewhat Pupa-like form. The whorls are only slightly eonvex in the middle, but the suture is distinctly impressed. The aperture is irregular ovate, acutely angled posteriorly, broadly ronnded anteriorly, with the inner margin simons and pretty strongly emarginate at the base of the columella. The onter lip is thin and sharp, only morlerately convex in the middle, and projecting only slightly or not at all, there being no distinct sntural noteh; anterior margin evenly rommed, only very slightly eftuse, sometimes slightly flaring, at other times not at all so; colymellamargin regularly excurverl, passing into the anterior margin without forming an angle, its outer elge usually everted; the inner lip, at the junction of the columella-margin with the body-whorl, sometimes has a perceptible emargination, but in other examples a strongly exeurvel outline. The base of the shell is only moderately prohluced, withont any seulpture, nor any trace of an umbilicus.

Length, 6^{mm}; brearth, 1.8^{mm}; length of body-whorl, 2.8^{mm}; length of aperture, $1 \cdot 2^{\mathrm{mm}}$.

Station 2109, off Cape llatteras, in 142 fathoms (No. 35,433), wumerons specimens, living and deat. Steamer Alhatross, 1883.

This species has the general appearance of certain species of Odostomia, lut there is no trace of a tooth on the imer margin. It is remarkable for the small size of the apical, as compared with the succeeding whorls, and also for its pupiform or obelisk-shaped ontline. In these characters it differs from the species of Eulimella herein described, and from those previously discovered on our coast. The aperture, also, is smaller than in most of the related species, and the outer lip projects less distinctly forward. It resembles in form species of Menestho, but has no spiral grooves. It seems to have been very abundant at the locality where these specimens were taken.

Odostomia tornata Verrill, sp. nov.
Shell small, conical, consisting of about six whorls, which are flattened and taper regularly to a very aente apex. Each whorl is surroumled by two very strongly marked, broad, revolving grooves, with nearly perpendicular edges; one of these is situated just above the suture; the other, which is somewhat broader, surrounds the middle of the whorl; the two are separated by a raised, flattened revolving band, about as wide as the grooves; a similar but somewhat wider raised band intervenes between the upper groove and the suture, which is not impressed and not very distinct, as it lies at the edge of the groove. The apical whorl is very minute and upturned.

The base of the sliell is somewhat produced and nearly smooth. Aperture irregularly ovate, acnte above, broadly rounded and flaring anteriorly. The outer lip is flattened laterally and a little produced and effuse anteriorly, forming a rounded angle where it joins the columella, which has a somewhat reflexed, nearly straight, onter margin. The immer lip las a strong, prominent, acute tooth or fold at the junction of the columella with the body-whorl. There is a narrow umbilical chink, somewhat concealed by the everted margin of the columella.

Length, 3^{mm}; breadth, $1 \cdot 5^{\mathrm{mm}}$; length of apertnre, 1^{mm}.
Station 2109, in 142 fathoms, off Cape Hatteras, 1883. One specimen.

This species is remarkable for the size and depth of the two revolving furrows.

Odostomia disparilis Verrill, sp. nov.
Shell elongated, slender, regularly tapering to an acute tip. Whorls about seven, morterately conrex, or a little flattened in the middle. The whorls of the spire with both longitudinal ribs and revolving lines, while the last whorl is nearly smooth, having only very faint revolving lines.

Suture conspicnous, decidedly impressed. On the lower whorls of the spire the ribs are prominent, thick, and obtuse, about fourteen to sisteen in momber, separated by intervals narower than their own breadth, and rmming nearly staight across the breadth of the whorl; the narrow and deep interstices are crossed by numerous fine revolring lines, which are not distinct on the ribs. On the last whorl faint indications of ribs occasionally appear as snbsutural crembations, disappearing a short distance below the suture. Apertme rather
narrow-ovate, much narrowed posteriorly, and terminating in a slight sutural sinus; anteriorly broadly and evenly ronnded, without any angle next the columella-margin; lip thin, broadly rounden on the onter margin, evenly ronnded anteriorly, passing into the thin coln-mella-margin in a regular curve; the inner lip is continnons, with a free margin along the body-whorl, which is oblique and almost in line with the columella-margin. This margin is interrupted by a small but distinet tooth, about at the middle, just opposite the minnte mombilical chink, formed by the reflexed margin of the lip. Apical whorl broken.

Length, $3 \cdot 2^{\mathrm{mm}}$; breadth, 1^{mm}; length of aperture, $0 \cdot 8^{\mathrm{mmm}}$.
Station 2109, in 142 fathoms, off Cape Hatteras, 1883. One specimen.

This is a very slender and delicate species, remarkable for the very sudden change in soulpture on the penultimate whorl. This, however, may not be a constant character of the species, lont due to some injury to the single specimen we have had for examination. But in other respects the species is quite mulike any of those hitherto leseribed from our coast. The aperture is remarkable for its evenly arched anterior and inner margins, which, with the free imer margin, gives it the form and appearance of certain species of Coingule (some varieties of C. aculeus). The presence of a distinct tooth shows, however, that it is mudonlotedly a trite Odostomicu. 'The sculpture on the upper whorls is, however, more like that found in Turbonilla.

RHIPHIDOGLOSSA.

Leptothyra induta Watson.
Leptothyra (induta, var.) albida Dall, Bull. Mus. Comp. Zool., vol. ix, p. 48, 1881.
Several specimens of this species were taken at station 2109, off Cape llatteras, in $1+2$ fathoms ($\operatorname{Nos} .35,369$ and 35,385).

These have been identified by direct comparison with West Indian specimens given to me hy Mr. Dall, with which they agree in all respects.

Very young specimens, abont two millimeters in diameter, lave a well developed spiral umbilicns; somewhat larger specimens have only a small perforation; while in all the mature specimens the umbilicus is entirely closed. The specimens recorded by Mr. Dall are from the Gulf of Mexico and West Indies, in 125 to 2805 fathoms,

Cyclostrema cingulatum Verrill, sp. nov.

Plate NXXII, figure 14.

Shell small, thin, transheent, spirally lined, depressed, with a low spire, an oblique base, a large funmel-shaped umbilicus, and a wide, oblique aperture.

Whorls about three and one-half. The nuclear whorl is smooth, small, rounded, a little prominent and incmred at tip; the next is strongly convex, swelling a little more strongly below the suture, which is decidedly impressed and slightly channeled. The bodywhorl is very large, constituting the greater part of the shell, very convex, and more broadly romded above than beneath, the most convex portion being on the base, below the periphery. The surface of the whorls, except the moleus, is minutely ronghened by fine, close, oblique and somewhat flexnous lines of growth, some of which are a little raised, especially near the suture, where they run obliquely backward, and have an indistinctly fibrous and wavy appearance. The upper whorls have no spiral lines, but the last whorl is surrounded by a mumber of thin, sharp, distinctly elevated, distant spiral cinguli, the intervals between them heing from tive to ten times their breadth; the upremost is at some distance from the suture ant there are only about six or seven above the periphery; below the periphery and on the base they become closer together and more nmmerous, eight to ten being visible in a view of the under surface; on the base the intervals between are mostly four or five times their breadth. The umbilicus is fumel-shaped, rather large and deep, and not defined by any definite border. The apertme is large and rery oblique, broad-orate, somewhat narrowed posteriorly, and broadly and evenly romded in front ; the onter lip is thin and sharp, evenly arehed; the pillar-lip is attached only for a short distance to the body-whorl, and shows a thin, free edge. Color transhicent grayish white. Animal not known.

Length, $2^{\text {mm }}$; breadth, $2 \cdot 2^{\mathrm{mm}}$; breadth of aperture, $1 \cdot 2^{\mathrm{mm}}$.
Station 2048, N. lat. $40^{\circ} 02^{\prime}$, W. long. $68^{\circ} 50^{\prime} 30^{\prime \prime \prime}$, in 547 fathoms (No, 38,100). Onc specimen.

This species is remarkable for its very oblique aperture; the wide, fumel-shaped umbiliens, and the peculiar, threat-like spinal lines, which surromd the borly-whorl and base. Whether it belongs to the genus Cyclostremce is somewhat doubtful.

Cyclostrema affine Verrill, sp. nov.

Plate NXXif, flgure 15.

Shell rather large for the genns, with a moderately elevated spire, a prominent, convex base, a narrow umbilical perforation surrounded by spiral lines, and evenly romeded, nearly smooth whorls, separated by a distinctly impressed suture.

The muclear whorl is moderately large, smooth, eliestnut-brown, rounded, slightly prominent, and a little incurved. The succeeding whorls are evenly rounded, increasing rapidly, with a smooth and somewhat glossy surface, and marked by faint lines of growth, and oceasionally with a few indistinct spiral lines below the suture, and by numerons thin, raised, and well defined cinguli on the loase; the innermost of these, immediately around the umbilicns, are stontest and most elevated, the size and elevation decreasing ontwardly until they disappear, nsually about midway between the umbilicus and the periphery; the imer ones are separated by intervals mostly about equal to twice their breatth; the outermost ones are relatively farther apart, while the intermediate ones are usmally nearest together; sometimes one or two of those revolving within the umbilical depression are decidedly larger than any of the others, taking the appearance of small carine, but the onter ones are always fine and thread-like. The aperture is somewhat oblique, large and nearly round, but slightly flattened or indented opposite the hody-whorl and umbiliens; the lip is thin and the imer portion is attached to the body-whorl for only a very short distance, and shows a distinct, free edge. The mmbilicus is marrow, spirally twisted and often partially concealed by the margin of the inner lip. Color grayish white, often a little iridescent and somewhat lustrons. Operculum yellowish horn-color.

Length, 2^{mm}; breadth, $2 \cdot 2^{\mathrm{mm}}$; breadth of aperture, $1 \cdot 3^{\mathrm{mm}}$.
station 2115 , N. lat. $35^{\circ} 49^{\prime} 30^{\prime \prime}$, W. long. $74^{\circ} 34^{\prime} 45^{\prime \prime}$, in 843 fathoms, five living specimens.

This is closely allied to C. busistriatum J., and C. ruyulosum Friele, of the European coasts.

Cyclostrema diaphanum Verrill, sp. nor.

Plate Xixii, figure 16.

Shell small, depressed, trochiform, thin, translucent, white, with a smooth shining surface, without sculpture except around the small umbiliens, where there are numerons fine, close, spiral lines.

Whorls about three and one-half, very convex and evenly rounded, separated by a deeply impressed suture. The nuclear whorl is very minute aud regularly spirally coiled, slightly prominent. 'The last whorl coustitutes the greater part of the shell and is shallow and very evenly rombded. The aperture is oblipue and very nearly circular, with only a slight angle posteriorly. The outer lip is a little flaring and projects forward anteriorly. The columella-lip is as regularly curved as the onter margin; the inner lip is in contact with the body-whorl ouly for a short distance, and shows a distinct, continuous, thin edge. The umbilicus is very small, but deep, being scarcely more than a pore or perforation, and is partially overarehed by the edge of the columella-lip. The umbilical area is covered by exceedingly fine, close, impressed lines, of which about twenty to twenty-five may be connted; the ontermost being abont midway between the center and margin of the base; elsewhere the surface is very smooth and polished, with only faint and indistinct lines of growth, except that in one case a very few fine, microscopic spiral lines were noticed just below the suture.

The operculum is thin, yellowish horn-color, circular, composed of many very narrow turns.

Length, 2.5^{mm}; breadth, 3^{mm}; breadth of apertire, $1: 3^{\mathrm{mm}}$.
Station 2004 , N. lat. $37^{\circ} 19^{\prime} 45^{\prime \prime}$, W. loug. $74^{\circ} 26^{\prime}$, in 98 fathoms, 1883.
'This species resembles the preceding in form, the small size of the umbiliens, and in having spiral lines around the umbiliens, with the surface elsewhere smooth. It differs, however, in being a thinner, more polished, transhucent shell; in having the last whorl projecting more olliquely forward, and especially in the much smaller and more regularly coiled melear whorl.

From station .2038, N. lat. $38^{\circ} 30^{\prime} 30^{\prime \prime}$, W. long. $69^{\circ} 08^{\prime} 25^{\prime \prime}$, in 2033 fathoms (No. 35,165), there is a specimen of a similar shell of larger size, which is, perhaps, a distinct species. It has, like the species above described, a minute, regularly coiled nucleus ant smooth rombed whorls, separated by an impressed suture, and with a very narrow umbilical perforation, but the spiral lines surounding it are less mumerous, less distinct, and farther apart. The aperture is large and nearly circular, but more distinctly angulated posteriorly.

Length, $3.25^{m \mathrm{~mm}}$; breadth somewhat greater.

Ganeza, sp.
A single specimen, referred to this genus, was found adhering to a Gorguia, taken by the Blake, off George's Bank, in 980 fathoms, in 1880.

The shell is small, white, smooth and glossy; the spire is moderately elevated and somewhat obtuse at the apex. Whorls four, very convex, with a deeply impressed suture. 'The nuclear whorl is small, regularly coiled, and not prominent. The base is somewhat produced and well romded. 'There is no mbilicus, but its position is marked by a small ilepression, or slight groove. The aperture is regularly rounded, exce,t on the side next the body-whorl and mubilical margin, where it is somewhat flattened; the lip is indicated on this side by a closely adherent and thin layer of enamel, which appears to be continuons. Seulpture none, except very fine and indistinct lines of growth.

Length, $2 \cdot 5^{\mathrm{mm}}$; breadth, nearly 3^{mm}.
This form might be, with equal propriety, referred to C'yclostrema. The distinctions between the latter and Ganezu and Tharsis seem to me trivial, and no more than specific characters, at most.

Tharsis, sp.
Shell small, white, smooth and lustrons, composed of about three and one-half whorls, which increase very rapidly, the last whorl forming a very large part of the shell. The spire is moderately elevated and the whorls evenly convex, with an impressed suture. The base is considerably produced and convex, and the aperture is oblique. The umbilicus is represented by a small and narrow chink, behind the pillar-lip. Senlpture none, though a faint internal subsutural hine is risible, and there are traces of microscopic lines of growth. Aperture broad-ovate, somewhat narrowed and angulated posteriorly, broadly rounded on the outer side, and a little prodnced and rounded in front. Columella-margin regularly excurved, while the portion that joins the body-whorl is decidedly flattened. The inner lip along the hody-whorl is represented by a thin hut continnous and closely adherent deposit of enamel, not showing a free edge; the lip anteriorly and on the columella-margin is distinctly thickened.

Length, $2 \cdot 3^{\text {wn }}$; breadth, $2^{\text {mm }}$.
Station 2115, off Cape Hatteras, in 843 fathoms, one specimen (No. 38,244).

This species resembles the preceding in general appearance and in the smooth, polished surface, but it is not so broad in proportion; the aperture is more oblique, and ovate instead of circular, and there is a small umbilical perforation, not fomd in the other.

Cocculina leptalea Verrill, sp. nov. Plate XXXII, figures 20, 20a, $20 b$.

Shell small, oblong-ovate, rather high, with a prominent, small compressed, strougly recurved, apex, with the tip small, strongly incurved, in eroded specimens becoming free and overarching, situated at abont the posterior third of the shell.

The anterior slope of the shell is decidedly convex and considerably longer than the posterior slope, which is nearly straght, but a little concave beneath the apex; the side-sopes are moderately convex. The sculpture consists of strongly marked, raised, very thin, and pretty regular concentric cinguli, which usually become finer and much closer towards the apex, but continue nearly to the extreme tip in perfect specimens; the intervals on the lower part of the shell are four times as wide as the cinguli, and are crossed by numerous, fine, wavy, radiating lines, much finer and closer than the cinguli, but easily visible with a lens; in crossing the cinguli they become a little thickened and give the margin of the latter a slightly crenulated appearance when viewed from above. In some cases these slight thickenings have the appearance of mimnte beats strung along the upper margin of the cinguli. The aperture is oblongovate, a little narrower anteriorly, with the sides a little eompressed, but still somewhat convex, and with the anterior and posterior margins bluntly romded. The margin is thin, sharp and plain. Color pale yellowish white. Epidermis indistinet.

Length of the largest specimen, $4^{m m}$; its brealth, $2 \cdot 8^{m m}$; height, $2.5 \mathrm{~mm}^{\mathrm{mm}}$.

Station 2036 , N. lat. $38^{\circ} 52^{\prime} 40^{\prime \prime}$, W. long. $69^{\circ} 24^{\prime} 40^{\prime \prime}$, in 1735 fathoms (No. 35,128), one dead ; and station 2038, N. lat. $38^{\circ} 30^{\prime} 30^{\prime \prime}$, W. long. $69^{\circ} 08^{\prime} 25^{\prime \prime}$, in 2033 fathoms (No. 38, 079), one in woorl, living, figured type; and station 2105 , N. lat. $37^{\circ} 50^{\prime}$, W. long. $73^{\circ} 03^{\prime}$ $50^{\prime \prime}$, in 1395 fathoms (No. 35,371), one living.

At station 2038 a specimen occurred in decayed wood which hat been bored by Tylophuyu or Teredo. It was associated with Cocculima spinigera Jefl: : and IAlus aryenter Jefti:

The animal, in alcohol, has a large rounded foot, a broad head, with small tentacles and a large frontal area, extending back on each side in the form of a wide lobe. The mouth is conspicuous, with a swollen, fleshy lobe on each side, and one in front.

This species somewhat resembles C. concentrica Jeff., which occurred, according to Mr. Jeffreys, in the same way, in Terecto-bored wood, associated with C. spinigera and Idas argentea. But C. concentrica is both figured and described by Mr. Jeffreys as destitute of radiating lines between the concentric ribs, while in our species the radiating lines are distinctly visible on all parts, even close to the extreme tip; therefore it is probable that they are distinct, though closely related, species.

Cocculina spinigera Jeffreys.

Proc. Zool. Soc. London, p. 393, pl. 44, figs. 1-1c. June, 1883.
Shell small, thin, rather depressed, with the outline pretty regularly elliptical; apex moderately elevated, small, acute, curved backward, but not distinctly incurved, unless at the extreme tip, situated at about the posterior third of the shell. The sculpture consists of numerous fine radiating lines, which are more or less obscured by extraneons growths, but appear to bear, each, a row of minute epidermal spines, as deseribed by Mr. Jeffreys. In our specimen, however, the spines are mostly concealed by minute slonges, etc., which cover the whole surface of the shell. The animal appears to resembe closely that of the preceding species.

Station 997 , N. lat. $39^{\circ} 42^{\prime}$, W. long. $71^{\circ} 32^{\prime}$, in 335 fathoms, 1881 , in Teredo-bored wood (Nos. 38,091 and 38,095), fifteen living; station 2115 , N. lat. $35^{\circ} 49^{\prime} 30^{\prime \prime}$, W. long. $74^{\circ} 34^{\prime} 45^{\prime \prime}$, in 843 fathoms (No. 38,094), one living specimen, 1883.

This is a somewhat doubtful species. Mr. WV. 1I. Dall, to whom I sent some of my specimens, thought that they might be the young of C. Bernii Dall.

Cocculina Dalli Verrill, sp. nov.
Shell moderately elevated, with the front slope long and convex; the apex is small, acute, situated far back, nearly over the posterior margin, and not turned to either side ; the posterior slope is abrupt and concave. Aperture broad oblong-elliptical, with the margin sharp and plain, museular scars distinct. The sculpture consists, on the anterior half, of numerous well-marked but small, raised, radiat-

Trans. Conn. acad., Vol. VI.
ing ribs, which are crossed by thin, raised, concentric lines of growth, so as to form a row of small gramules or vaulted scales along each rib. Along the sides the ribs are fainter, and posteriorly they are nearly obsolete, while the concentric lines remain distinct. Color grayish white.

Length of aperture, 6^{mm}; breadth, $4 \cdot 3^{\mathrm{mm}}$; height, $3^{\text {mm }}$; length of anterior slope, $6^{\text {mus }}$.

Station 1096, in 317 fathoms, N. lat. $39^{\circ} 53^{\prime}$, W. long. $69^{\circ} 47^{\prime}$, 1882 ; one specimen (No. 38,081).

This species resembles C. Beanii in form, but has very different sculpture.

Cocculina conica Verrill, sp. nov.
Shell very small, thin, translucent, white, rather high, conical, with a very broad-ovate or nearly round base and a prominent, sub-spirally twisted apex, which is turned strongly backward, and obliquely to the left. The sub-spiral apex is relatively rather large, and the extreme tip seems to have been decidnous. The anterior slope of the shell rises at first rather abruptly, and then becomes very convex, forming the central and highest part of the shell, from which it descends a little to the apex; the posterior slope is concave under the overhanging apex, and then descends with a short, abrupt slope to the margin, which extends back but little beyond the apex. The senlpture consists only of rather irregular, concentric raised lines of growth, which run sub-spirally on the upper portion of the shell.

The animal, in alcohol, has a nearly round foot and two small, slender, cylindrical tentacles, and is apparently withont eyes.

Length and breadth, about 1^{mm}; height, about the same.
Station 2078 , in 499 fathoms, N. lat. $41^{\circ} 12^{\prime} 50^{\prime \prime}$, W. long. $66^{\circ} 12^{\prime} 20^{\prime \prime}$.

Puncturella (Fissurisepta) eritmeta Verrill, sp. nor.
Plate XXXII, figures 19. $19 a$.
Shell small, thin, delicate, translucent white, glossy, moderately elevated, with the base hetween elliptical and ovate, somewhat narrowed anteriorly, having both ends evenly rounded and the sides somewhat compressed, but still moderately convex. The apex is minute, nearly central, compressed, turned backward, but scarcely incurved, and with the extreme tip smooth and glossy. The pore is very small, situated very close to the apex, and it appears to be divided by a slight transverse septum, across the middle. The
sculpture consists of very numerous radiating striæ, which are deeussated by fine and close, raised, regularly concentric lines of growth of abont the same size as the radii on the upper portion, where the shell is minntely cancellated, but on the lower part of the shell the concentric lines become larger and more distant, and have the form of regular raised cingnli; the intervals between these, which are two or three times as wide as the ridges, are erossed by the much funer and closer radiating lines, which do not produce a regular cancellated appearance on this part. Both the radiating and longitudinal lines are so fine as scarcely to be visible without a lens. Internally the surface is nearly smooth and lnstrous, and the external senlpture shows through the snbstance of the shell. In the apex there is a minnte transverse lamina, forming a small flattened tube.

The anterior slope of the shell, seen in protite, is broadly rounded; the posterior slope falls off abruptly at first, near the apex, and then slopes regularly to the posterior margin, with a nearly straight, or but slightly convex outline. The side-slopes are steep, regularly and slightly convex.

Length, 5^{mm}; breadth, 3^{mm}; height, 2^{mm}.
Station 2096, N. lat. $39^{\circ} 22^{\prime} 20^{\prime \prime}$, W. long. $70^{\circ} 52^{\prime} 20^{\prime \prime}$, in 1451 fathoms (No. 35, 174). One living specimen.

The animal has well developed, moderately stout, blunt tentacles; frontal dise broad, semicirenlar, with the lateral angles prolonged backward.

Propilidium elegans Verrill, sp. nov.
Shell small, very thin and fragile, translucent blnish white, rather depressed, elongated-elliptical, with the recurved apex situated at about the posterior third. The nuclear whorl is very minute, smooth, glassy, compressed, strongly involute and turned a little to the left, forming a complete whorl, visible in a side view. The whole surface, moder the microscope, has the appearance of a very fine shagreen. This is produced by very miunte, short, wavy, raised lines, which are mostly arranged in zigzag or in herring-bone style; in some parts the two sets of lines, running obliquely, eross each other at nearly right angles; on other portions one or both sets are replaced by minute punctations, or granulations. This senlpture is visible only under a strong lens or with the componnd microseope.

The internal lamina or septum is narrow, erescent-shaped, situated behind and some little distance below the extreme apex, and not
forming an elongated channel ; it is distinctly visible from the out= side, owing to the translucency of the shell.

Length of shell, 3.5^{mm}; breadth, 2.5^{mm}; height, about 1^{mm}.
Station 2105, N. lat. $37^{\circ} 50^{\prime}$, WV. long. $73^{\circ} 03^{\prime} 50^{\prime \prime}$, in 1395 fathoms (No. 38, 072). Two specimens, living.

The animal has a short, broad-orate foot, subtruncate in front, with the edge frilled. Frontal disk rather large, broad, semicireular or crescent-shaped, with the angles extending back in a large obtuse lobe on each side. Buceal area semicireular; mouth surrounded with four convex elevations, one before and one behind it, and one on each side. Tentacles slender, tapering, acnte. Eyes apparently wanting. No cirri on mantle.

POLYPLACOPHORA,

Placophora (Euplacophora) Atlantica Verrill and Smith, MSS.
Verrill, Amer. Journ. Sci., vol. xxiv, p. 365, Nov., 1882.

Plate XXX, figures $1,1 a, 1 b$.

Ontline broad-ovate. Marginal membrane rery broad anteriorly and narrow posteriorly. It increases gradually from the posterior end to a point opposite the fifth plate, where it suddenly expands into a broad round front, with the breadth one-third greater than the greatest breadth of the shell, and projecting forward to a distance equal to one-half the length of the shell. The marginal membrane is thick, leathery, and scabrons, everywhere closely covered with minute spimes; the lower surface anteriorly shows many radiating grooves (not distinct in the smaller eximples) ; between these are rows of slightly raised small verruce, corered with small spimules. The inner edge, or mantle-border, is sharply defined, enclosing an elliptical area around the head and gills, with a well-marked posterior sims; its front edge is livided into about seven digitations, the anterior ones rather long, tapering, and tentacle-like, but coriaceous and covered with fine spimbes, like the rest of the marginal membrame. Cephalic bood large, broal-hmate; foot relatively small, ovate. Gills muncrous (in the largest about sixteen on each side), extending nearly the whole length (more than two-thiris) of the foot, but reaching neither end of it.

The shell is broad-ovate, slightly carinated in the middle; valves short, broad, the posterior ones decreasing rapidly in breadth, the last one very small. Anterior valve short, very broadly rounded in front; posterior edge with a very obtuse reëntrant angle and a
slight, rounded, median noteh; the surface is marked with faint radiating grooves, and is miformly covered with small rounded granules. 'The succeeding valves have their posterior border nearly straight, with a slightly projecting, obtuse, median beak, from which run well-marked, elerated, romded diagonal ribs; the lateral areas are somewhat raised, with a depression next the ribs, and their surface is covered with small, low rounded granules, more distinct than those on the median areas, which appear nearly smooth to the naked eye, but are crossed by evident transverse lines of growth. The posterior valve has the posterior edge a little upturned, and slightly emarginate in the middle, with a submarginal, raised rib near the posterior margin above; the upper edge overhangs the lower lamina but slightly, or not at all, in the smaller specimens, with a deep groove between; the lower lamina is more deeply emarginate, in the middle, than the upper one, with wider lamine each side of the notch, but in the largest example the upper portion is divided into several laminæ, and projects decidedly beyond the lower, while the noteh is obsolete. (Perhaps this is due to injury during life.)

When detached, the inserted edges of the valses are very narrow, the front edge of the anterior valve is narrower than the upper, lamina thickened and divided into numerous (abont thirty) small, rough and mequal denticles, which become obsolete near the lateral angles. The median plates have the lateral insertion plates small, trmeate, not projecting beyond the upper lamina, with a wellmarked groove between, and separated from the anterior insertion plates by a deep narrow notch, in line with the diagonal ribs; the anterior plates are broadly rounded, not very wide, separated by a rather wide rounded median noteh.

Color of marginal membrane dull rusty or yellowish brown ; shell grayish white, stained with brown.

Length of the largest specimen, in alcohol, 32^{mm}; its greatest breadth, 26^{mm}; length of shell, 21^{mm}; greatest breadth, 18^{mma}; length of anterior valve, 4^{mm}; its breadth, $15 \cdot 5^{\mathrm{mm}}$; length of exposed part of 3 l valve, 4^{mm}; of posterior valve, $4^{\cdot} 7^{\mathrm{mm}}$; its breadth, 8^{mm}; extent of marginal membrane beyond the shell, anteriorly, 12^{mm}; length of foot, 12^{mm}; breadth of foot, 8^{mm}; length of head, 3^{mm}; breadth, i^{mm}.

A saiall specimen is 21^{mm} long; breadth, 16^{mm}; expanse of mem brane in front of shell, 6.5^{mm}; leugth of shell, 16^{mm}; its breadth, $13.5^{\text {man }}$

When living the marginal membrane was relatively broader.

Station 1124, N. lat. $40^{\circ} 61^{\prime}$, W. long. $68^{\circ} 54^{\prime}$, in 640 fathoms, off Nantucket Island, 1882; station 2067, N. lat. $42^{\circ} 15^{\prime} 25^{\prime \prime}$, W. Iong. $65^{\circ} 48^{\prime} 40^{\prime \prime}$, in 122 fathoms, 1883.

Trachydermon exaratus (G. O. Sars).
Lophyrus exaratus G. O. Sars, Moll. Reg. Arct. Norvegire, p. 113, pl. 8, figs. 1, $a-k$, pl, II, fig. 1 (dentition.)
Trachydermon exarutus Verrill, Amer. Journ. Sci., vol. xxiv, p. 365, Nov., 1882.
Plate XIX, figlees 2, $2 a, 2 b$.
Elongated, oblong-elliptical, strongly convex; valves distinctly obtusely carinated medially. Anterior valve nearly semi-circular in front; the postcrior edge forming an obtuse reëntrant angle, with a rounded notch in the middle; surface distinetly radially grooved with single rows of rounded grannles between the grooves, becoming larger toward the margin.

Median valves are moderately wide, nearly straight posteriorly, the hinder ones with a slight median beak with distinct diagonal furrows and ridges, dividing them into median and lateral areas; the median areas are covered, on the sides, with fue but very distinct longitudinal grooves, with the intervening ridges narrow and rounded, more or less confluent and broken up into gramles, near the diagonal lines, toward the median ridge becoming finer and irregnlar, and finely granulous anteriorly and along the carina. The lateral areas are more elevated and covered with stronger radiating ridges, broken up into oblong and rounded, flattened granules, and separated by narrow radial furrows. The lateral insertion-plates of the median valves project but little beyond the upper lamina; they are subtruncate, with a thin notch or slit corresponding to the diagonal line above. The posterior valve is transversely elliptical, with the posterior edge evenly rounded; the front area as in the preceding ones; the posterior area is covered with fine radial and concentrie grooves, dividing it into radiating rows of small rounded granules; the artieulating plates of its front edge are rather wide, broadly rombled or subtrumeate, and separated by a broad, romded median sims; posteriorly the inner surface is marked by abont sixteen radiating lines, terminating in thin notehes of the inserted edge, which is very narrow and simple.

The marginal membrane is rather narrow and covered with rather stont, prominent, oblong and obtuse spinules, regularly arranged in quincunx, their ends looking like granules; at the edge and on the lower side these are replaced by small, slender spimules.

Head rounded; hood large, the sides produced backward into rounded lobes. Foot long and rather narrow. Gills about twentyfour on each side, extending from the posterior end of the foot to about its anterior third.

Length, 17^{mm}; breadth, 8^{mm}; height, $5 \cdot 5^{\mathrm{mm}}$; length of shell, 15.5^{mm}; breadth, 7^{mm}; length of 1st valve, 3^{mm}; breadth, 6^{mm}; length of $3 d$ valve, exposed part, $2^{\text {mm }}$; breadth, $7^{\text {mm }}$; length of posterior valve, 3.5^{mm}; breadth, 6^{mm}.

Station 1120, in 194 fathoms, off Martha's Vineyard, 1882 ; station 2069, in 101 fathoms, N. lat. $41^{\circ} 54^{\prime} 50^{\prime \prime}$, W. long. $65^{\circ} 48^{\prime} 35^{\prime \prime}, 1883$.

This species is readily distinguished from T. albus by the very distinct differentiation of the valves into median and lateral areas, having lines of sculpture roming in different directions, and by the much coarser granulation of their surfaces. In T. albus there are no distinct lateral areas ; the radiating grooves and ridges are absent; and the granulation is so fine and obsemre as to be scarcely visible without a lens. The spinulation of the marginal membrane is similar in the two species.

TECTIBRANCHIATA.

Scaphander nobilis Verrill, sp. nov.

Plate NXXII, figures $18,18 a, 18 b, 18 c, 18 d$.

Shell large, swollen, stout, broad-ovate in outline, thin, translucent, and of an exceedingly delicate texture. The body-whorl is very large in proportion to the rest of the shell. The aperture is large, broad-ovate in the anterior part, narrowed and curved posteriorly, extending to the apex of the shell, where it terminates in a noteh, the outer lip extending back considerably beyond the notch. The aperture is much encroached upon by the convexity of the bodywhorl, but about the middle the inner lip is strongly excarated and forms a broad and somewhat sinuons eurve; the onter lip is very broadly and evenly rounded throughout most of its extent; anteriorly the curvature forms the are of a circle; posteriorly it extends back beyond the apex of the shell in the form of an obtuse and slightly everted process, with its posterior margin concave, somewhat sinuous and spiral, and a little thickened. The surface is smooth and polished, somewhat shining, and everywhere covered by spiral lines formed by series of oblong dots, which are decidedly sumken below the surface, and separated by intervals about equal to or less than
their own length. The spiral lines are mequal in fineness, the broader ones altornating with finer ones in which the dots are very narrow; the intervals between the spiral lines are also variable in breadth. None of the specimens appear to have a distinct epidermis.

Length of shell to apex of one of the largest specimens, $35^{\text {man }}$; breadth, 25^{mm}; length of aperture, 37^{mmn}; greatest breadth of aperture, 18^{mm}.

Off Martha's Vineyard, at stations 2052, in 1098 fathoms; 2074, in 1309 fathoms; 2076, in 906 fathoms; 2077, in 1255 fathoms; off Delaware Bay, stations 2102, in 1209 fathoms; and 2103, in 1091 fathoms (No. 35,374). It was most common at station 2102, N. lat. $38^{\circ} 44^{\prime}$, W. long. $72^{\circ} 38^{\prime}$, in 1209 fathoms, where thirteen specimens were taken, ten of them living (No. 35,641).

This species bears some resemblance to 5 . punctostriatus (Migh.) H. and A. Ad., but is much thimer, with a far more delicate texture. Its form is much shorter and more swollen in the middle, and the spiral lines are less numerous, with wider intervals, and have the punctations larger and not so close together, giving a much smoother appearance to the surface, althongh the pmetate character is quite as evident. The aperture is also much broader, especially in its anterior half, while the body-whorl projects into it much more strongly. The inner lip is much thinner and shows only a slightly thickened fold along the columella-margin. Posteriorly the shell is not at all narrowed, but is evenly romded instead of being pinched up as in S. punctostriatus. The posterior process of the outer lip is more flaring, and extends farther backward beyond the apex. The apex of the shell is nearly plain and smooth, though sometimes slightly indented, and does not have a thickened deposit of enamel extending beyond the edge of the notch, as in the latter.

Actæon melampoides Dall.
Bull. Mus, Comp. Zool., vol. ix, p. 35, 1881.
Station 2115, off Cape Hatteras, in 843 fathoms, one specimen (No. $35,565)$.

The original specimens, described by Mr. Dall, were from the (iulf of Mexico, in 310 fathoms, Blake Expedition. I have compared our example with Mr. Dall's speeimens.

HETEROPODA.

Atlanta inclinata Souleyet.

Souleyet, Voy. de la Bonite, vol. ii, 1. 375, atlas, pl. 19, figs. 9-15, 1852.
Station 208.t, N. lat. $41^{\circ} 16^{\prime} 500^{\prime \prime}$, W. long. $67^{\circ} 05^{\prime} 15^{\prime \prime}$, at the surface, one living suecimen (No. 38,227) ; station 2110, N. lat. $35^{\circ} 12^{\prime}$ $10^{\prime \prime}$, 1 . long. $74^{\circ} 57^{\prime} 15^{\prime \prime}$, three dead specimens ($\mathrm{No}^{\top} .35,493$) ; station $2115, \mathrm{~N}$. lat. $39^{\circ}+9^{\prime} 30^{\prime \prime}$, W . long. $74^{\circ} 34^{\prime} 45^{\prime \prime}$, one dead specimen (No. 38,316).

According to Souleyet, this species is found both in the Atlantic and Pacific Oceaus.

Atlanta rosea Souleyet.

Souleyet, Voy. de la Bonite, vol. ii, p. 377, atlas, pl. 19, figs. 16-20, 1852.
Station 2084, with the preceding, one living specimen (No. 35,180); and station $2099, \mathrm{~N}$. lat. $37^{\circ} 12^{\prime} 20^{\prime \prime}$, W. long. $69^{\circ} 29^{\prime}$, at the surface. One living specimen (No. 38,258).

This species is more common in the warmer parts of the Atlantic.

Atlanta Gaudichaudii Eydoux and Souleyet.

Voyage de la Bonite, Zool., vol. ii, p. 379, atlas, pl. 19, figs. 29-34, 1852.
Station 2038, N. lat. $38^{\circ} 30^{\prime} 30^{\prime \prime}$, W'. long. $69^{\circ} 08^{\prime} 25^{\prime \prime}$, fou living specimens (No. 38,372) ; station 2046 , N. lat. $40^{\circ} 02^{\prime} 49^{\prime \prime}$, W. long. $68^{\circ} 49^{\prime}$, two living (No. 38,273) ; station 2100 , N. lat. $39^{\circ} 22^{\prime}, \mathrm{W}$. long. $68^{\circ} 34^{\prime} 30^{\prime \prime}$, two living (No. 38,369).

Atlanta Lamanonii Eydoux and Souleyet.
Voyage de la Bonite, Zool., vol. ii, p. 371, atlas, pl. 18, figs. 30-37, 1852.
Station 2037 , N. lat. $38^{\circ} 53^{\prime}$, W'. long. $69^{\circ} 23^{\prime} 30^{\prime \prime}$, one dead specimen (No. 38,366). A single dead specimen is referred to this species with some doubt, although it agrees pretty closely with the description and figures referred to.

Atlanta pulchella Verrill, sp. nov.
Shell minute, composed of about four whorls, very thin, tramsparent and lustrous, compressed, with a rather high, exceedingly thin keel, commencing just back of the notch of the aperture and extending aromd rather more than half the circmerence of the last whorl.

[^3]The spire is small, searcely oblique, slightly elevated, its apex not rising above the level of the last whorl. Suture of the last whorl, well marked. The umbilicus is small, and shows within it only abont one and a half whorls. The extreme apex is smooth, but the succeeding two or three whorls are covered with four or five well marked, revolving lines, which fade ont on the pennltimate whorl. The last whorl, which constitutes the greater part of the shell, is a little inflated on the ventral side, with the sides slightly convex and the dorsal portion compressed; its surface is polished and marked by faint lines of growth, and sometimes shows faint, microseopic, spiral lines on the left side. The aperture is marrow-ovate, acute above and rounded below. The notch is rather wide and moderately deep.

Color, transparent white, with a faint, chestnut-brown, sutural line. In alcohol the animal shows several very distinct black spots.

Diameter, about $1 \cdot 25^{\text {mum }}$.
Taken in abundance, from the surface, at station 2100, oft' Delaware Bay, N. lat. $39^{\circ} 22^{\prime}$, W'. long. $68^{\circ} 34^{\prime} 30^{\prime \prime}$, October 3rd, 1883 (No. 38,397), with the temperature of the surface water $69^{\circ} \mathrm{F}$.; and in smaller mmbers at station 2038 , N. lat. $38^{\circ} 30^{\prime} 30^{\prime \prime}$, W. long. $69^{\circ} 08^{\prime}$. $25^{\prime \prime}$, July 26th, 1883 (No. 38,410), temperature of the surface water $76.5^{\circ} \mathrm{F}$.

This minnte shell is easily distinguished from om other species by its compressed form, with closely coiled whorls and small, erect spire, and especially by the distinct spiral seulpture of the earlier whorls. It appears to be the most abundant speeies off our northern coast.

Firola Keraudrenii Eydonx and souleyet.
Yoyage de la Bonite, Zool., vol. ii, 1. 349, atlas, pl. 16, figs. S-10, $18 . \mathbf{5}^{2}$.
Station 2038 , N. lat. $38^{\circ} 30^{\prime} 300^{\prime \prime}$, WT. long. $69^{\circ} 08^{\prime} 25^{\prime \prime}$, twonty-five living; station $2039, \mathrm{~N}$. lat. $38^{\circ} 19^{\prime} 26^{\prime \prime}$, WV. long. $68^{\circ} 20^{\prime} 20^{\prime \prime}$, five living. Also at other stations, usually in company with Sugitte.

PTEROPODA.

Cavolina quadridentata (Les.)
Ifyalea quentridentate Rang and Soulejet, Hist. Nat. Moll. Pterofordes, p. 39, pl. 3, figs. 13-15.
Souleyet, Voy. de la Bonite, vol. ii, p. 147, atlas, pl. 4, figs. 25-32, 1852.
Station 2043, N. lat. $39^{\circ} 49^{\prime}$, West long. $68^{\circ} \cong 8^{\prime} 30^{\prime \prime}$, (No. 34,878); station 208t, N. lat. $40^{\circ} 16^{\prime} 50^{\prime \prime}$, WV. long. $67^{\circ} 05^{\prime} 15^{\prime \prime}$, (No. 38,260) ; and station 2109, N. lat. $35^{\circ} 14^{\prime} 20^{\prime \prime \prime}$, W. long, $74^{\circ} 59^{\prime} \mathrm{i} 0^{\prime \prime}$, (No. 38,252).

Cavolina angulata (Souleyet.)

Hyake anguluta Souleyet, Toy. de la Bonite, vol. ii, p. 152, atlas, p. 5. figs. 1-6, 1852.

Rang and Souleyet, Hist. Nat. Moll. Pteropodes, p. 42, p]. 12, figs. 3-4.
Station $2038, \mathrm{~N}$. lat. $38^{\circ} 30^{\prime} 30^{\prime \prime \prime}$, W'. Jong. $69^{\circ} 08^{\prime} 25^{\prime \prime}$; one living specimen, (No. 38,251.)

Cavolina gibbosa (Rang.)

Hyaker gibbosa Rang and Souleyet, Tist. Nat. Moll. Pteroporles, 1. 38, pl. 10, figs. 3, 4.
Sonleyet, Voyage de la Bonite, p. 144, atlas, pl. 4, figs. 13-19, 1852.
Hyaten flava D'Orhigny, Voj., vol. v, p. 97, pl. 5, figs. 21-25, (t. Soulej at.)
Dead specimens of this species occurred at stations I154, 2052 , 2096, 2115. The most northern was $115 t$, N. lat. $39^{\circ} 55^{\prime} 31^{\prime \prime}$, W. long. $70^{\circ} 39^{\prime}, 1882$.

Styliola subulata (Quoy and Gaimard.)

C'leodora sulutata Quoy and Gaimard, Ann. des se. nat., vol. x, p. 23:3, pl. 8, figs. 1-3.
Creseis spinifera Rang, Aun. los sc. nat., vol. xiii, p. 314, pl. 17, fig. 1.
Cleodora subulute Rang and Souleyet, ITist. Nat. Moll. Pteropodes, 1. 55, pl. 6, figs. 2-6.
Cleotora subuluta Soulejet, Voy. de la Bonite, vol. ii, p. 192, atlas, pl. 8, figs. 5-9, 1852.

Station 2039, N. lat. $38^{\circ} 19^{\prime} 26^{\prime \prime}$, WV. long. $68^{\circ} 20^{\prime} 20^{\prime \prime}$, four living specimens (No. 35,151) ; station 2043 , N. lat. $39^{\circ} 49^{\prime}$, W. long. 65° $28^{\prime} 30^{\prime \prime}$, five specimens (No. 35,154) ; station $2108, \mathrm{~N}$. lat. $35^{\circ} 16^{\prime}$, W. long. $75^{\circ} 02^{\prime} 30$, one specimen; also at stations 2109 and 2115 , off Cape Hatteras.

This species is common in the tropical parts of the Atlantic and in the Meditermmean.

Styliola virgula (Rang.)

Cleodora virgula Rang, Antı. des se. nat., vol. xiii, p. 316, pl. 17, fig. 2.
Cleodora virgult. Rang and Souleyet, Hist. Nat. Moll. Pteropodes, p. 57, pl. 6, fig. 2, pl. 13, figs. 20-24.
Souleyet, Voy. de la Bonite, vol. ii, p. 196, atlas, pl. 8, figs. 18-25, 1852.
Station 2038, N. lat. $38^{\circ} 30^{\prime} 30^{\prime \prime}$, W'. long. $69^{\circ} 08^{\prime} 25^{\prime \prime}$, three living specimens (No. 38,236) ; station 2039, N. lat. $38^{\circ} 19^{\prime} 20^{\prime \prime}$, W. long. $68^{\circ} 20^{\prime} 20^{\prime \prime}$, five living specimens (No. 38,250) ; station 2099, N. lat.
$37^{\circ} 12^{\prime} 20^{\prime \prime}$, W. long. $69^{\circ} 39^{\prime}$, nue living specimen ($\mathrm{No} .38,233$) ; station $2100, N$. lat. $39^{\circ} 22^{\prime}, W$. long. $68^{\circ} 34^{\prime} 30^{\prime \prime}$, eleven living specimens (No. 38,243).

Styliola virgula, var. corniformis (D'Orb.)
Hyaliea corniformis D'Orb., Soy., vol. v, p. 120, pl. 8, higs. 20-23, (t. Sonleyet).
Cleodora ì igula, var., Rang and Sonleyet, Hist. Nat. Moll. Ptéroporles, p. 57, pl. 13, fig. 22.
Cleodora virgula, var., Soulejet, Voy. de la Bonite, atlas, pl. S, fig. 24, 1852.
This shell is very similar to the preceding, except that the posterior part is strongly curved to one side.

Living specimens occurred at stations 2039 and 2100 , with the normal form, as given above.

Triptera columnella (Rang.)
Cuvieria columnella Rang, Ann. des sc. nat., vol. xii, p. 323, pl. t̄. figs. 1-8.
Rang and Souleyet, Hist. Nat. des Moll. Ptéropodes, p. 59, pl. 4, figs. 1-11, and plate 14, figs. 1-6, 1852.

Station 947 , off Martha's Vineyard 89 miles, one dead specimen (No. 38, 196), 1880 ; station 1095, N. lat. $39^{\circ} 55^{\prime} 28^{\prime \prime}$, W. long. $69^{\circ} 47^{\prime}$, one dead specimen (No.38,163), 1882. Dead specimens were also dredged at stations $2041,2043,2084,2096,2109,2110$ and $211 \bar{\circ}$. At the last named locality, off Cape Matteras, twenty specimens ocemried (No. 35,614). The most northern station was 2084, N. lat. $40^{\circ} 16^{\prime}$ $50^{\prime \prime}$, W. long. $67^{\circ} 05^{\prime} 15^{\prime}$, where four specimens were taken. It is common in the tropical parts of the Atlantic.

Spirialis trochiformis Souleyet.

Atlante trochiformis D’Orb., Voy., p. 1it, pl. 12, figs. 29-31, (t. Sonleyet).
Spirialis trochiformis Souleyet, Rev. Zool., p. 239 ; Voy. de la Bonite, vol. ii. p. 223, atlas, pl. 13. figs. 27-i3t, 1852.
Rang and Souleyet, Hist. Nat. Moll. Ptéroporles, p. 64, pl. 14, figs. 2i-31.
Station 2100, N. lat. $39^{\circ} 22^{\prime}$, $\mathbf{W I}^{\prime}$. long. $68^{\circ} 34^{\prime} 30^{\prime \prime}$, at the surface, mumerons living specimens, (No. 35,222).

This species is common throughout the warmer parts of the Atlantic. It is particularly abmodant in the Gulf stream, off the coast of Florida.

Spirialis bulimoides Souleyet.
Atlanta Zulimoides D'Orb., Toy., p. 179, pl. 12, figs. 3fi-38.
Spirialis Zulimoides Sonleyet, Rev. Zool., p. 138; Toy. de la Bonite, vol. ii, p. 224, atlas, pl. 13, figs. 35-42, 1852.
Rang and Souleyet, Hist. Nat. Moll. Ptéropodes, p. 64, pl. 15, figs. 3-4.
Station 2100 , N. lat. $39^{\circ} 22^{\prime}$, W. long. $68^{\circ} 3 t^{\prime} 30^{\prime \prime}$, at the surface, eight living specimens (No. 38,235).

This species occurs abmodantly in all the tropical parts of the Atlantic, but has not previously been olserved so far north, off the American coast.

Clione longicaudatus Souleyet.
Souleyet, Voyage de la Bonite, Zool., vol. ii, p. 286, atlas, pl. 14, figs. 17-21, 1852.
Rang and Souleyet, Hist. Nat. Moll. Ptéropodes, p. S0, pl. 15, figs. 28-32, 1852.
Station 210 n, N. lat. $39^{\circ} 22^{\prime}$, W. long. $68^{\circ} 34^{\prime} 30^{\prime \prime}$, off Delaware Bay, eight living specimens (No. 38,367).

Trichocyclus Dumereilii (Oken) Esch.
Chenu, Man. Conch., i, p. 117, fig. 514.
Station $2100, \mathrm{~N}$. lat. $39^{\circ} 22^{\prime}, \mathrm{W}$. long. $68^{\circ} 34^{\prime} 30^{\prime \prime}$, off Delaware Bay, four living specimens (No. 38,379).

SCAPHOPODA.

Dentalium solidum Verrill, sp. nov.
Shell large, robust, thick and strong. Posterior third pretty regnlarly curved, but only moderately so ; anterior half nearly straight, the amount of curvature varying in different individuals. Anterior aperture large, eirenlar, moderately ohlique, with the edge, when perfect, plain, thin and sharp, the shell rapidly increasing in thickness farther back, in the posterior half beeoming very thick and solid. Posterior end tapering to a small extremity, the opening, when perfeet, small, pear-shaper, with a moderately deep noteh on the dorsal side and a shallower and more rounded one beneath. Surface, in perfeet specimens, somewhat glossy, but covered with mumerous close, very distinct, oblique lines of growth; the posterior half is also marked by shallow longtitudinal striations, or small impressed grooves, which are separated by intervals usnally much wider than the grooves, but variable in width, with the margins of the grooves well romnded; at about the middle of the shell these lines become
faint, or entirely disappear, though a part of them sometimes continue to the anterior ent, where they are distant and appear only as slightly indented furrows or depressions; at abont the posterior third the number of grooves varies from twenty to forty.

Color, usually grayish or slaty brown extemally, bluish white within; more perfectly grown and yomger specimens are white on the anterior portion and only faintly bluish white within.

Length of an average specimen, $\delta 2^{\mathrm{mm}}$; diameter, at the anterior end, 10^{mm}; at the posterior ent, 2 mm . A more slemler specimen is $75^{\mathrm{mm}} \operatorname{long}$; diameter of the oral eml, 9^{mm}; of the posterior emd $1 \cdot 4^{\mathrm{mm}}$.

This species was taken in considerable numbers at numerous stations by the Albatross. Station 2050, in 1050 fathoms; 2052, in 1098 fathoms; 2077, in 1255 fathoms, mmerous specimens, living and dead (No. 34,904) ; 2083, in 959 fathoms, two specimens (No. 34,687) ; 208t, in 1290 fathoms, mmerons specimens, living and dearl (No. 34,911 and No. 34,688) ; 2102, in 1209 fathoms, one specimen ; 2103 , in 1091 fathoms, mmerons living specimens (No. 35,636) ; 210t, in 991 fathoms, two dead; and off Cape Latteras, at station 2111, in 938 fathoms, ummerous living specimens (No. 35,635); 2115, in 843 fathoms, one fine specimen (No. $35,6+5$).

This fine large species might readily be taken for a gigantic form of D. striolutum or D. occiclentrele. It is, however, a much stouter shell than either of these, of a thicker and firmer substance, and with a relatively larger aperture. It differs also in the character of the longtitudinal senppture. In D. oceidentale the longitudinal grooves are more momerous, hroader and deeper, having more the character of true furows, with the intervening ridges mostly narrower than the grooves, from which they rise rather abruptly, with well-ilefined border, while in the present form the grooves are merely depressions in the general surface of the shell, with indefinite borders.

In D. striolatum the longitudinal seulpture is almost obsolete, except near the posterior end; and such lines as exist have the same character as in D. occidentule, thongh fainter, the two forms possibly being ouly varieties of one species. The most perfeet specimens of D. solichm have also two posterior notehes, white in D. striolatum there is nsually a single noteh on the dorsal side, but the character of the posterior aperture scems to be variable in most of the species of this group.

Dentalium occidentale, var. sulcatum, nov.

Shell of moderate size, thin, translncent white tinged with very pale yellowish or bluish, moderately curved, more decidedly behind the middle, tapering regularly and rather rapidly from the anterior to the very slemler posterior end. The entire surface is covered by well marked, nearly regnlar, narrow raised ribs with nearly perpendicular sides and rounded summits, separated by well-defined, strongly marked, concave grooves, which are about twice the width of the rilos anteriorly, but posteriorly are of about the same width. The ribs and furrows show on the interior of the shell within the aperture, in reverse, the whole thickness of the shell conforming to the soulpture as if they were corrugations of its substance. The oral aperture is relatively large and circular, very little oblique, and usually with the very thin edge more or less broken. Posterior aperture very small, usually plain and withont any notches, but in one of the most perfect specimens it has a slight lateral noteh on each side; in others there is a small dorsal noteh.

Length of one of the largest specimens, $20^{\text {min }}$; diameter at the anterior end, $3^{\text {min }}$; at the posterior end, $\cdot 6^{\text {min }}$. Some specimens are slightly more slender than the one measmed.

Station 2076, in 906 fathoms, one living specimen ; station 2077, in 1255 fathoms, four living (No. 35,093), and station 2079, in 75 fathoms, one living specimen.

This variety resembles D. cumdichom Jeffireys in its form and longitudinal senlpture, but lacks the transverse lines between the ribs; the posterior end is also more slender and more curved than shown in his figure. It also closely resembles some young specimens of the typieal D. occidentule, but the latter has not so strongly marked and regular ribs and grooves, nor does the senlpture extend entirely through the thickness of the shell so as to appear on the inside, as in the present form. Specimens often ocenr, however, that are evidently intermediate between the two forms, in the character of the senlpture and thickness of the shell.

Dentalium, sp. g.

Shell small, very slender, considerably curved. Surface covered with very mumerous, regular, microscopic, longitudinal lines, separated by narrower striz. Anterior apurture cireular, slightly oblique. Posterior aperture very small, srfuarely truncated in one specimen, oblique in the other, withont any slit.

Length of the largest example, 6^{mm}; diameter of the oral end, - $8^{\text {mm }} ;$ posterior chl, $^{\text {anmm }}$.

Station 2037, in 1731 fathoms; and station 2035 , in 203:) fathoms. (No. 35, 142).

These specimens are probably young, hut differ from all of our recognized species in the peculiar sculpture, in the form of regular, microscopie, longitudinal strise. They may, however, prove to be the young of D. cupillosum .J., which we have not yet recognized among the specimens dredged on our coast. There is, also, a slender shallow-water species, from off Cape Hatteras, which has, when young, similar fine striations, but the lines are not so mumerous and the shell is straighter.

Dentalium, sp. h.
Shell small, slender, nearly straight, or very gently curved. The sculpture consists of fifteen to twenty narow, elevated, angnlar ribs, which diminish iosize posteriorly and become nearly obsolete near the tip; anteriorly they are separated by much broader, clearly defined, coneave grooves, the sculuture showing in reverse on the interior surface. Oral aperture cireular, somewhat oblique. Posterior opening small, circular, squarely truncated.

Length, 15^{mm}; diameter at the oral end, $1 \cdot 5^{\mathrm{mm}}$; at the posterior end, 8^{mm}.

Station 2038, in 2033 fathoms, three specimens (No.35,165). One specimen, differing from those lescribed in being more slender and having more numerons and finer longitudinal ribs, was taken at station 2115 , in 843 fathoms.

These specimens are probably the young of one of the larger specics. They resemble the yomg of some of the varieties of 1 . occidentule, except that they are more slender and straighter. It is not improbahle, however, that they may prove to be forms of that variable species.

Siphodentalium teres Jeflireys.

Jeffreys, Proc. Zool. Soc. London, for 1~is2, p. (;61, pl. 49, fiy. 5.
Station 2072, in 858 fathoms (No. 38,08s) ; station 20st, in 1290 fathoms (No. 38,08t) ; ant station 2115 , ofl' ('ape Hatteras, in st3 fathoms (No. 35,625).

It was taken oft the coast of Europe hy the J'oreupine Expedition, in 1870.

Cadulus grandis Verrill, sp. nov.
General appearance of the shell much like that of C. Pundionis, but more than twice as large, without the abrupt bulging at the largest part, which is a characteristic feature of the latter, and with a relatively larger posterior aperture.

The shell is, for the gemus, large and strong, transheent bluish white when living, milk-white when dead, with a highly polished surface, only faintly marked by the lines of growth when perfect. The shell is moderately curved, the greater part of the curvature being behind the middle, and is largest at about the anterior third, the decrease being very gentle and regular in both directions, but a little more rapid towards the anterior end. The dorsal side is a little flattened towards the aperture, which is decidedly oblique and very broadelliptical. The posterior aperture is relatively rather large, circular, with the edge a little thickened and divided into four rommed notches, the two mper ones being usually a little deeper and farther apart than the two ventral ones.

Length of one of the largest examples, 15^{mm}; greatest diameter, $3 \cdot 5^{\text {mun }}$; transverse diameter of the oral end, $3^{\text {mm }}$; vertical diameter, 2.5^{mm}; diameter of the posterior end, $1 \cdot 3^{\mathrm{mm}}$. Some specimens exceed these dimensions.

This species occurred at station 2052, in 1098 fathoms; station 2076, in 906 fathoms, sixteeu specimens, mostly living (No. 34,735); station 2084, in 1290 fathoms, three specimens (No. 35,184); station 2103, in 1091 fathoms, one specimen; station 2111, in 938 fathoms, one dead specimen; station 2115 , in 843 fathoms, six dead specimens. From station 2043, in 1467 fathoms, one large malformed specimen oceurred, apparently belonging to this species (No. 38,116).

This species might readily be mistaken for a large form of C. Pondionis, but it differs from the latter in baving a larger posterior aperture, a more nearly circular oral aperture, and especially in the absence of the abrupt bulging at the largest part. The form is usually less curved, although in this respect both species are somewhat variable. This shell is, however, much thicker and in every way more robust.

Cadulus Watsoni Dall.
Dall, Bull. Mus. Comp. Zool., vol. ix, p. 34, 1881.
The specimens referred to this species resemble, in size and general character, C. Pandionis, and, like that species, have the month
decidedly oblique and slightly elliptical, though somewhat more nearly circular than in the latter. The posterior portion is somewhat less tapered and has the terminal opening a little larger. Its border, when perfect, is usually furnished with four shallow noteles, the t wo nearest the dorsal side being somewhat larger than the others. The most marked distinction is in the more gently tapered form and in the absence of any distinct gibbosity or swelling at the widest portion, the decrease in size being very gradual toward both ends, while in C. Pandionis the widest portion forms a somewhat abrupt enlargement, often amounting to a slight rounded angle when seen in a dorsal view. This feature, with its smoothess, renders it somewhat difficult to pick up fresh and moist specimens of the latter with forceps. Both species differ considerably in the amount of the curvature of the posterior part of the shell.

One of our larger specimens is 11^{mm} long; greatest diameter, $2 \cdot 1^{\mathrm{mm}}$; transverse diameter at the anterior end, $1 \cdot 9$; diameter at the posterior end $\cdot 9^{\mathrm{mm}}$.
This species occurred at station 2048, in 547 fathoms, eight living specimens (No. 34,814); station 2092, in 197 fathoms, nine specimens (No. 38,122) ; and off Cape Hatteras, at station 2111, in 938 fathoms, one specimen (No. 35,765) ; and station 2115, in 843 fathoms, thirty-six specimens (No. 35,623).

This species is also closely related to a shallow-water species taken in abundance by the Albatross, off Cape Hatteras, in 14 to 48 fathoms. The latter is, however, a smaller species, with a more slender posterior portion and a perfectly circular aperture.

Cadulus cylindratus Jefireys.

Jeffreys, Ann. Mag. Nat. Hist., February, 1877, p. 158 ; Proc. Zool. Soc. London, for 1882 , p. 664, pl. 49, fig. 6.
The few specimens referred to this species show some variation in form, some being decidedly curved, others only very slightly so. The shell tapers very slightly from the middle toward both ends, which are very nearly equal in size, circular, and scarcely contracted. The oral aperture is slightly oblique. The posterior opening, in our specimens, is fiucly and irregularly notched, probably accidentally.

Length, $7 \cdot 3^{\mathrm{mm}}$; greatest diameter, $1 \cdot 7^{\mathrm{mm}}$; diameter of the oral end, $1 \cdot 4^{\mathrm{man}} ;$ posterior end the same.

Station 2041, in 1608 fathoms, three specimens (No. 38,030).
Off the coast of Europe, it was taken at several localities by the

Porcupine and Valorous Expeditions, and in the Bay of Biscay by the Travailleur Expeditions. It has occurred at depths ranging from 652 to 1450 fathoms.

LAMELLIBRANCHIATA.

Thracia nitida Verrill, sp. nov.
Plate XXXiI, figure 22.
Shell thin, tumid, broad-ovate, gaping cousiderably posteriorly and slightly auteriorly. Umbos prominent, situated in advance of the middle, with the beaks strongly incurved and turned forward, leaving a broad, depressed, cordate lunular area, which is not defined by any definite boundary. The posterior dorsal margin descends slightly; the posterior margin is slightly prolonged and bluntly rounded ; the ventral margin is broadly curved, becoming nearly straight in the middle; the anterior margin is obliquely rounded. The surface is nearly smooth, shining, and iridescent, marked with inconspicuons lines of growth, and covered with very minute, regnlarly scattered granule-like elevations, each of which bears a minute hair-like process, when not rubbed; towards the posterior end these are more numerous and conspicnons, and are arranged in regular delicate radiating lines, but over the greater part of the shell they are scarcely visible to the naked eye. Epidermis very thin, greenish yellow. Hinge-margin slender, somewhat thickened along the ligamental groove, and with a slight notch anteriorly for the reception of the minute cartilage. No ossicle was detected in the alcoholic specimen. Pallial and muscular impressions faint.

Length, 21^{mm}; height, 18^{mm}; thickness, 14^{mm}.
The animal has a circle of sixteen large, tapered, acute tentacles around the common base of the siphons, which are brown in alcohol. The efferent tube is somewhat prolonged in the contracted specimen, but the other is entirely withdrawn.

Station 2097, off Chesapeake Bay, in 1917 fathoms (No. 35, 267).

Poromya sublevis Verrill, sp. nov.

Plate XXXII, figure 21.

Shell rather large for the genns, short, high, tumid, with prominent umbos and large beaks, which are curved inward and forward. The length of the shell is considerally less than the height from the beak to the ventral margin. Anteriorly the lunular region is large and some-
what excavated, rather indistinetly defined by feeble undulations. The anterior end is short, very obtusely rounded or subtruncate; the ventral margin is broadly rounded, slightly obliquely produced a little behind the middle, forming there a scareely distinet, rounded angle, from which a posterior, ill defined, rounded ridge runs up, to the beak; posterior end very obtusely rombled and somewhat oblique; posterior dorsal margin descending rapilly from the heak and slightly convex. Surface nearly smooth to the naked eye and covered with a very thin, pale yellowish epidermis; under a lens the whole surface, except on the umbos, is covered with very slight, rather distinct radiating lines of very minnte pointed gramules, which are pretty evenly spaced along the lines, rather distantly on the middle area of the shell, but becoming much more numerous toward the posterior end, where they are comected by distinct but very fine raised lines, which appear to be chiefly epidermal; one line, more distinct and more elevated than the rest, runs from behind the beak to the upper part of the posterior margin, defining a narrow posterior dorsal area. The minute gramles scattered over the surface appear to be chiefly due to the epidermis, but where the surface is somewhat rubbed they still appear as minnte specks, which become very fine and irregularly scattered on the umbos; where most perfect, each gramule is surmonnted by a minute sharp process of the epidermis. The margin is sharp and plain, with a thiekened interior ridge a short distance within the edge. The hinge consists of a large, stont, obtuse tooth, just below the beak, which projects considerably inward and is divided at the smmit into three low, romded lobes or cusps, of which the most interior is the largest and most prominent, while the ontermost is conflnent with the lmmlar margin; a supporting ridge runs from the imer margin of the tooth both forward and backward to the margins; posteriorly, between this ridge and the margin, there is a very narrow and long, curved ligamental groove, rmming forward and terminating just muder the beak above the center of the large tooth; a small, divergent, somewhat raised ridgelike process, grooved on top, intervenes between the anterior part of the ligamental furrow and the principal tooth. The inner surface of the shell is opaque white, and marked with slight irregular lines and grooves and with feeble mdnlations parallel with the lines of growth. Extemally the shell is white beneath the thin, pale yellow epidermis.

Length, $13 \cdot 5^{\mathrm{mm}}$; transverse breadth, 6^{mmm}; height, from apex to ventral margin, 14.5 mm .

Station 2097, N. lat. $37^{\circ} 56^{\prime} 20^{\prime \prime}$, W. long. $70^{\circ} 57^{\prime} 30^{\prime \prime}$, in 1917 fathoms (No. 35,263), one dead but fresh specimen.

This species is very distinct from P. granulata and P. rotunduta Jeff., both in form and in the character of the surface, which in both the latter forms is covered with comparatively large, rounded granules or small pustules, often elosely crowded together, while in this species the granules are almost microscopic in size and separated by comparatively wide intervals, or they even appear remotely seattered on some parts, so that the shell presents a nearly smooth appearance to the naked eye, or when moderately magnified, which is strongly in contrast with both the other described forms. The form of the shell in this species is also much shorter and more tumid, with higher umbos and more prominent beaks. The charaeter of the hinge, however, agrees pretty closely with that of P. gramulutu, but the tooth is larger and stronger.

Neæra undata Terrill, sp. nov.
A large species remarkable for its short broad form, its abbreviated siphon and the undulated character of the surface. Shell broad-ovate, not much swollen, with the beaks not far from the middle. The posterior dorsal margin descends rapidly in a nearly straight line; the posterior end is broadly, obtusely truncated and only slightly prolonged; the ventral margin is very broadly eurved; the posterior margin less broadly rounded. The surface, especially anteriorly, is covered with mndulations formed by narrow, raised, subtriangular ridges separated by rather wide, shallow, concave intervals, much as in most species of Astarte. These fade out, more or less, posteriorly and toward the ventral margin, where they are replaced by regular, concentric, raised lines. Hinge-margin of the right valve moderately thick. The eartilage-pit is not very large, descending, directed obliquely backward. Posterior lateral tooth is not very prominent, having the form of an elongated, thickened ridge, its most prominent point only a short distance back of the cartilage.

Length, 24^{mm}; height, 18^{mm}; thickness, 13^{mm}.
Station 2098, off Chesapeake Bay, in 2221 fathoms. A single valve, considerably broken, (No. 35,256).

Neæra gigantea Verrill, sp. nov.
Shell very large, thick and opaque, short, stout, with prominent umbos, and short, wide beak, with the musenlar sears and pallial lines deeply sunken. The shell is swollen and broadly ronnded in front, with the ventral edge broadly rombled, narrowing gradually to the
beak, which is searcely differentiated from the ventral line of the shell. The beak is very short and broad, rapidly narrowing to the blunt tip, which is a little bent to one side; the dorsal line, behind the beaks, is nearly straight, sloping pretty regularly to the beak. The umbos are large, prominent, swollen, strongly incurved and turned somewhat backward. The cartilage-pit is of moterate size, ovate, and directed obliquely backward, its posterior border adherent to the posterior hinge-border, while its inner and anterior elges are more or less free. Lateral tooth apparently but little developed, but the left valve has the anterior hinge-line broken. There is a noteh in the edge of the shell opposite the cartilage-pit, in each valve. The sculpture consists only of irregular, concentric, raised lines or ridges, most of which are not continnons; these become strong or more irregular on the beak; they are often crossed very obliquely by the finer, raised lines of growth.

Length, about 38^{mm}; height, about 26^{mm}; transverse breadth, 16^{mm}.

Station 2097, off Chesapeake Bay, in 1917 fathoms, (No. 35,255).
The only specimen obtained consists of both valves, but neither is entire, so that the measmrements cannot be accurately made. In these the shell is remarkably thickened by a caleareons deposit on the inside of the shell, so that all the museular scars appear as smken pits; this great thickening of the shell, however, may be abnormal. This shell appears to be larger and more massive than any known species. It is remarkable for its short, swollen form, and short, broad beak. It has no radial sculpture.

Abra longicallis (Scacchi).
Tellina longicallis Scacchi, Not., p. 16, pl. 1, fig. 7, (t. Dall).
Abra longicullis G. O. Sars, Moll. Reg. Aret. Norvegide, p. 7t, pl. 6, fig. 3; pl. 20, fig. 4, 1878.
Syndosmya longicallis Dall, Bull. Mus. Comp. Zool., ix, p. 133.
Seroticuluria longicallus Jeffreys, Proc. Zool. Soc. London, for 188t, p. 145.
Station 2043 , N. lat. $39^{\circ} 49^{\prime}$, W. long. $68^{\circ} 29^{\prime} 30^{\prime \prime}$, in 1467 fathoms, one valve.

The specimen reforred to, 1 have compared with those taken by the "Blake" in the Gulf of Mexico, in 860 fathoms, and identified by Mr. Dall as this species. They do not differ in any respect. The shell of Abra lioica (Dall) is shorter, rounder, and more swollen.

Tellimya ferruginosa (Mont.)
Mya ferruginosa Montague, Test. Brit., p. 44, pl. 26, fig. 5.
Tellimya ferruginosa G. O. Sars, Moll. Reg. Arct. Norvegiæ, p. 70, pl. 20, figs. $1 a-c$.

$$
\text { Plate XXX, figure } 13 .
$$

This species was taken living, in considerable mumbers and on several oceasions, at and just below low water mark, in sand and mud, at the Gintters, on Naushon Island, near Wood's Moll, August, 1883, by the Fish Commission parties. It had not previously been definitely determined as inhabiting the American coast.

On the Emropean coast it occurs from the Gulf of Lyons to morthern Norway, at Lofoten and West Finmark, and from 7 to 85 fathoms in depth. It has also been found in the Coralline Crag in England, and in the Post-glacial deposits.

The animal is active and opens freely and widely. It often lies for a long time on the back with the valves gaping widely, the foot more or less extended and twisting about, and the elegantly frilled mantle edge broadly expanded and extending considerably beyond the edge of the shell, all around. Animal translucent whito. The foot is long, lignlate, very flexible, in full extension longer than the shell, in partial contraction broad at base with a long groove on the edge and an ill-defined white stripe in the center. It can be flattened out so as to be used as a creeping foot. The foot issues from the middle of the ventral edge of the shell. Mantle with the outer edge broad and delicately frilled and molulated and with small papille. It projects all around the edge of the shell, except close to the hinge. Ventral opening for the foot long, and large, bordered with small papillæ. Posteriorly a pouch-like lobe of the mantle often protrudes below the anal opening, which is widely separated from the ventral slit; it is a simple opening of the mantle, of ten a little prominent, but more often not at all so. Several (7 or 8) large and small ones lived several days in confinement.

Montacuta tumidula Jeffreys.
Jeffreys, Brit. Conch., vol. v, p. 177, pl. 100, fig. 5, 1869. G. O. Sars, Mol. Reg. Arct. Norvegiæ, p. 69, pl. 19, figs. $18 a-b$.

Station 2103, off Delaware Bay, in 1091 fathoms; and station 2115, off Cape Ilatteras, in 843 fathoms, one specimen (No. 38,190).

Off Lofoten, 100-120 fathoms; off Hebrides and Shetland, 40-80 fathoms; Mediterranean.

Cryptodon tortuosus (Jeffreys.)

Axinus tortuosus Jeffreys, Proc. Zool. Soc. London, for 1881, p. 702, pl. 61, fig. 6.
Station 2078, in 499 fathoms, two specimens; station 2084, in 1290 fathoms, four living specimens (No. 38,175) ; and station 2115, off Cape Hatteras, in 843 fathoms, two living specimens (No. 35,611).

Off the European coast, it was taken by the Porcupine Expedition, in 1870, and by the Travailleur Expedition, in the Bay of Biscay. It occurred in 645 to 1012 fathoms.

Malletia obtusa (M. Sars) Mörch.
Yoldia obtusu G. O. Sars, Remarkable Forns of Animal Life, p. 23, pl. 3, figs. 16-20, 1872.

Malletic obtusu G. O. Sars, Moll. Reg. Arct. Norvegiee, p. 41, pl. 19, figs. 3, a-b. Jeffreys, Proc. Zool. Soc. London, for 1879, p. 586.

This species occurred at stations 2018, 2041, 2042, 2043, 2076, $2077,2084,2095,2096,2102,2105,2106,2110,2115$, in 516 to 1608 fathoms. It was most common at station 2043 , N. lat. $39^{\circ} 49^{\prime}$, W. long. $68^{\circ} 28^{\prime} 30^{\prime \prime}$, in 1467 fathoms, fifteen specimens (No. 38,180); and at station 2096 , N. lat. $39^{\circ} 22^{\prime} 20^{\prime \prime}$, W. long. $70^{\circ} 52^{\prime} 20^{\prime \prime}$, in 1451 fathoms, forty-five dead specimens (No. 34,782).

Yoldia hyperborea Torell.

Torell, Spitzbergens Molluskfauna, p. 149, pl. 2, figs. 6, $a-b, 1859$.
Foldia limatula G. O. Sars, Moll. Reg. Aret. Norvegite, p. 40, pl. 4, figs. l2, $u-b$, 1878 (nor Say).
This species is closely allied to Yoldia limatula and Yoldia myatis, but is evidently distinet from both. Hitherto it has not been recognized as an inhabitant of the American coast, but it is not uncommon off the coast of Nova Scotia.

It was dredged by the U. S. Fish Commission at station 55, in 33 fathoms; stations 61-63 and 63-67, in 20-41 fathoms, 1877.

Yoldia sericea Jeffreys, var. striolata J.
Jeffreys, Mollusea Valorous Expul., Amn. Mag. Nat. Hist., 1876, p. 432 ; Proc. Zool. Soc. London, for 1579, p. 579, pl. 4ti, fik. 1.

This species occured at stations 2035, 2037, 2041, 2042, 2043, 2052, 2076, 2084, 2096, 2103, 2106, 2110, 2111, 2115, in 516 to 1731 fathoms. It occurred in greatest abundance at station $2076, \mathrm{~N}$. lat. $41^{\circ} 13^{\prime}$, W. long. $66^{\circ} 00^{\prime} 50^{\prime \prime}$, in 906 fathoms, one hundred and sixty
specimens (No. 35,148) ; station 208t, N. lat. 40 ${ }^{\circ} 16^{\prime} 50^{\prime \prime}$, W. long. $67^{\circ} 05^{\prime} 15^{\prime \prime}$, in 1290 fathoms, screnty specimens (No. 34, 862) ; and at station 2115, off C'ape Hatteras, N. lat. $35^{\circ} 49^{\prime} 30^{\prime \prime}$, W. long. $74^{\circ} 34^{\prime}$ $45^{\prime \prime}$, in 842 fathoms, fifty living specimens (No. 35,581).

It is recorted by Jeffreys, off the coast of Ireland, in 1366 to 1380 fathoms; oft the coast of Portugal, in 740 to 1095 fathoms; and from the "Valorons Expedition," at station 12, in 1450 fathoms.

Our specimens are regularly concentrically seulptured with narrow grooves and raised lines. They agree closely with specimens labeled as var. strioleta, in Mr. Jeffireys' collection, at the National Musem, with which I have compared them. They also resemble some of the varieties of $Y_{.}$pusio.

Yoldia messanensis (Seguenza.) Variety.

Leda acuminata Jeffreys, Ann. Mag. Nat. Hist., July, 1870, p. 69 (non Von Buch). Seguenza, Nuculidi terziarie merid. d'Ital., R. Acad. Lincei, 1877, p. 1175, pl. 3, figs. $15,15 a, 15 e$.
Leda messanensis Jeffreys, Pruc. Zool. Soc. London, for 1879, p. 576.
The specimens refered to this species most resemble the variety brevirostris Seguenza, and differ considerably from the typical form. Our specimens are small, broad-ovate, rather thick and swollen, with the beaks nearly central and a little prominent. The posterior end is somewhat acute, though blunt at tip, and a distinct, rounded ridge rums from the beaks to the posterior extremity, and just in front of this there is a distinct inflection of the surface and ventral margin, without definite boundaries; the rest of the ventral margin is evenly rounded and the anterior end is obtuse and regularly curved. On the posterior dorsal margin, above the extreme tip, there is a slight, ronnded angle, and from thence to the beak the outline is nearly straight. The anterior dorsal margin is convex. The surface, when fresh, is somewhat lustrons and iridescent, and covered with a pale yellowish epidermis. The seulpture geuerally consists of very fine concentric lines of growth, but in some specimens there are, toward the margin, distinct concentrie grooves and ridges, the grooves being shallow, concave, with the ridges much narrower. The hinge-margin is wide and strong, with large and broad teeth, of which there are about nine on each side of the center; the eartilage-pit is very small.

Length, $4^{1 \mathrm{~m}}$; ventral margin to beak, 3^{mm}.
Station 2038, in 2033 fathoms (No. 35,212), two dead; station 2041, in 1608 fathoms; station 2042 , in 1555 fathoms; station 2043 ,
in 1467 fathoms, two living and three dead (No. 38,209) ; and station 2096, in 1451 fathoms, one dead (No. 38,211).

This species has been taken at mmerous localities ofl' the European coast by the Valorous, Poreupine and other expeditions, and between the Azores and Bermudas ly the Challenger Expedition; its range being from 100 to 1750 fathoms.

It was also taken in the West Indies and Gulf of Mexico by the Blake Experlitions, in 100 to 1002 fathoms, accorting to Mr. Dall. It is also foum in the Pliocene of sonthern Italy.

The speemens from the blake Expedition, which I have examined, are much more acutely pointed posteriorly, and have much stronger concentrie striations than om examples. It is quite possible that the two forms are not identical.

Yoldia regularis Verrill, sp. nov.
Shell small, nearly regnlarly oval, with both ends ohtusely rounded, and with the ventral edge broally and regularly curved. The posterior end is a little narrower and more tapered than the anterior. The posterior dorsal margin is convex and rounded about as much as the ventral edge. The anterior dorsal margin is distinctly concave in front of the beak, but there is no defined lunule. The umbos are somewhat prominent, of moderate size, and enved forward. The beak is situated at about the anterior third. The surface is smooth, polished amd iridescent, withont any seulpture except slight and irregular lines of growth. Epidermis is thin and yellowish white. The hinge-margin is rather strong and curved, the posterior portion much longer than the anterior, and hearing about eight rather large and stont, prominent teeth. The anterior portion is short and nearly straight, and bears forr or five prominent, erect teeth, the last tooth situated only a short distance from the beak. 'The cartilagepit is relatively large and oblique and extends back a little ways from the beak.

Length, $3.5^{\text {min }}$; height, $2 \cdot 5^{\text {num }}$.
Station 1093 , ofl Martha's Vincyard, in 349 fathoms, 1882. Three -pecimens (No. 38,420).

This small speeies differs from all others recognized from onr coast in its very regular ovate form, with the beak directed anteriorly, so that it resembles extemally a minute Tippes or Mactra, or a compressed speeies of Cellistre. It is also remarkable for the shortness of the anterior hinge-margin and the small number of anterior teeth, as well as for the musmally large cartilage-pit.

Yoldia subequilatera (Jeffreys.)

Leda subequilatera Jeffreys, Proc. Zool. Soc. London, for 1579 , p. 579 , pl. 46, fig. 3.
Station 2037, in 1731 fathoms, cight living specimens (No. 35,201); station 2078, in 499 fathoms, twenty-five living specimens (No. 35,138) ; and station 2115 , off Cape Hattcras, in 843 fathoms, one dead specimen (No. 38,191).

It has been taken by the Lightning, Poreupine, and Norwegian Expeditions, in 459 to 7 h8 fathoms, and off the Azores, in 1622 fathoms, by the Talisman Expedition.

Yoldia Jeffreysii (IIdalgo.)

Leck lata Jeffreys, Ann. Mag. Nat. Hist., Nov. 1876, p. 431.
Leda Jeffreysi .Teffreys, Proc. Zool. Soc. London, for 1879, p. 579, pl. 46, fig. 2.
Station 1093, in 349 fathoms, 1882 ; and station 2084, in 1290 fathoms, 1883 , several fresh specimens (No. 38,415).

It has been taken at nmmerons localities off the eoast of Europe, and between the Azores and Bermudas, at depths ranging from 452 to 219 fathoms.

Our specimens are not full grown and have the hinge plate light and thin, with very slender teeth, but in other respects they agree well with Mr. Jettireys' original specimens, with which I have compared them at the National Museum.

Leda Bushiana Verrill, sp. nov.
Shell narrow-lanceolate in form, compressed, with the front end simple and bluntly rounded, much shorter than the posterior emd, which tapers gralually and ends in a narrow, truncated tip, which is not upturned, or but very sliglitly so. The mombos are a little prominent and rather sharp. From the apex two rounded ridges run to the posterior ent; the lower one, ruming to the lower angle of the tij, is pretty strongly marked, and causes a slight undulation of the surface and of the margin below it. The posterior dorsal margin is compressed, rising in the form of a sharp, smooth keel, which has usually a slightly convex outline. The dorsal area is pretty clearly separated from the rest of the surface by the upper angular ridge rmming from the beak. In front of the heak there is a small but pretty well defined lanule. The surface, in all but one specimen, is covered with rather strong, sharply defined, raised concentric lamella, which are separated by concave intervals of variable width, those towards the mobo heing narrower than those near the margin. The
lamelle in crossing the lower posterior ridge become a little more prominent, or form small crests, but fade out at the rpper ridge. In one specimen, which does not differ in other respects, the seulpture is mueh more feehle, consisting of very numerous fine and close coneentric lines, which are but little elevated, but some of these, at variable distances apart, are a little stronger than the rest ; the posterior ridges are also nearly obsolete. The epidermis is thin, closely atherent, light yellowish green. The interion surface is bluish white and lustrous, the concentric ribs showing through hy translucency. The teeth are prominent, sharp, rather slender, strongly compressed, and connected by a thin, weli marked ridge along the inner edge. 'The anterior hinge-margin is gently enrved, and hears, in the larger specimens, abont twelve well-formed teeth, besides four or fire minnte ones close to the cartilage. Just in front of the small triangular cartilage-pit, a small, somewhat prominent, obtuse tooth is developed on the inner surface of the hinge-margin. The posterior hingemargin is decidedly longer than the anterior, nearly straight, and bears about fifteen distinct teeth, besides a few minute ones close to the cartilage-pit. A distinct ridge rons from the beak to the lower angle of the posterior tip.

Length of the largest example, 15^{mm}; height, from ventral margin to beak, $7^{\text {mm }}$; from leak to anterior margin, 6^{mm}; from beak to posterior end, 10 mm .

Station 2110 , off Cape Hatteras, in 516 fathoms (No. 35., 29).
This species somewhat resembles, in size and form, L. temisulcata and L. mimutn, but it is a thimer, more compressed, and more delicate shell, and is quite distinct in its senpture and in the structure of the hinge.

Phaseolus ovatus? (Jeff. MSS.)
Seguenza, Nuculidi terz. mer. Italia, R. Accarl. Lincei, Ser. III, vol. i, p. 1182, pl. V, fig. 29-20c, 1877.
Station 2084, in 1290 fathoms, six living specimens.
Our specimens are small and shaped nearly like Yoldia Jefficysii, with a smooth, lastrons, irideseent surface and yellowish green epidermis. The hinge-margin is thin, with a few very oblique and appressed, low, feeble teeth, three or four in front and four or five behind the small eartilage-pit. Its identification is doultful.

Nucula, cancellata Jeffreys.
Nucula reticulata Jeffreys, Ann. Mag. Nat. Hist., 1876, p. 429; Proc. Zool. Soc. London, for 1879, p. 583, pl. 46, fig. 7, (name preoceupied hy llinds).
Nucula cancelleta Jeffreys, Proc. Zool. Soc. London, for 1881, p. 951.
This species ocenred in great abmonce at station 2076, N. lat. 41° 13^{\prime}, W. long. $66^{\circ} 00^{\prime} 50^{\prime \prime}$, in 906 fathoms (No. 34,765), and station 2084, N. lat. $40^{\circ} 16^{\prime} 50^{\prime \prime}$, W. long. $67^{\circ} 05^{\prime} 15^{\prime \prime}$, in 1290 fathoms (No. 34,860), one thousand specimens, living. It also ocenred in less numbers at stations 2035, in 1362 fathoms; 2037, in 1731 fathoms; 2038, in 2033 fathoms; 2043 , in 1467 fathoms, 2052 , in 1098 fathoms; 2072, in 858 fathoms (one dead); 2096, in 1451 fathoms; 2102, in 1209 fathoms; 2103, in 1091 fathoms.

Off the European coast, it was taken by the Torcupine ant Valorous Expeditions, in 420 to 1470 fathoms, and liy the Challenger Experlition, off the Azores, in 1000 to 1100 fathoms.

Glomus nitens Jeffreys.
Jeffreys, Mollusca Valorons Exped., Ann. Mag. Nat. Hist., 1876, p. 433 ; Proc. Zool. Soc. London, for 1879 , p. 573 , pl. 45 , fig. 5.

Station 2041 , N. lat. $39^{\circ} 22^{\prime} 50^{\prime \prime}$, W. long. $68^{\circ} 25^{\prime}$, in 1608 fathoms, one dead specimen.

This species was taken by the Porcupine Expedition, in the North Sea, in 567 fathoms ; off the coast of Ireland, in 1180 to 1476 fathoms, and at station 9 , in 1750 fathoms.

Limopsis cristata Jeffreys.

Jeffreys, Ann. Mag. Nat. Hist., Nov. 1876, p. 434 ; Proc. Zool. Soc. Loudon, for 1879, p. 585, pl. 46, nig. 8.

Station 2048 , N. lat. $40^{\circ} 02^{\prime}$, W. long. $68^{\circ} 50^{\prime} 30^{\prime \prime}$, in 547 fathoms, two valves.

These specimens have been compared by me with types in the collection of Mr. Jeffreys at the National Museum. They appear to agree in all the essential characters.

It was taken, oft the coast of Enrope, by the Porcupine and Valorous Expeditions, in 292 to 1095 fathoms; and by Travailleur Expedition, in the bay of Biscay, in : 41 to 1693 fathoms.

Limopsis tenella .Jeffreys.
Jeffreys, Amn. Mag. Nat. Hist., Nov. 1876, p. 433.
Station 2037, N. lat. $38^{\circ} 53^{\prime}, \mathrm{W}$. long. $69^{\circ} 23^{\prime} 30^{\prime \prime}$, in 1731 fathoms; and $2038, \mathrm{~N} . \mathrm{l}_{\text {at. }} 38^{\circ} 30^{\prime} 30^{\prime \prime}$, W. long. $199^{\circ} 08^{\prime} 25^{\prime \prime \prime}$, in 2033 fathoms.

I have compared these specimens with types in Mr. Jeffreys' collection at the National Museum.

It was first taken liy the Valorons Expedition, in 1450 fathens.

Pecten leptaleus Verrill, sp. nov.

Shell small, thin, delicate, well ronnded, resembling P. pustulosus in form, l,nt with much finer senlpture. The mbos small, pointed. The anterior ear is prominent with a rather deep, rombled noteh in the upper valve and a narrower and derjer notch in the lower valve ; the posterior ear is small and short. 'The sculpture on the upper ralre consists of numerous, thin, rather close, concentric riblets which become fewer and less elevated toward the umbos of which the most prominent part is nearly smooth; these concentric lines contime over the cars, hecoming gnite promincont on the anterior ear, but fine and close on the posterior one. The intervals between the concentric lamelle are crossed by mumerons, very thin, raised lines which become olisolde on the momb, and nearly so on the anterior car. These radiating lines in crossing the eoncentric lamellie form minnte, rombled grames which are most distinct on those near the margin, where they are very mmerous, appearing likestrings of minute beals along the lamellar. 'The lower valve is smaller and less convex than the mper, with the onter portion of its margin bent downard. The senlpure eonsists only of a very fine, close, concentric lines, except on the ears which are covered with mmerons, close, radiating lines, which are roughened by the concentric lines. Color yellowish white.

Lengeth, $7^{m m}$; height from ventral margin to dorsal edge, $65^{m m}$; length of dorsal margin, $4^{\text {mm }}$.

T'wo specimens were taken, off' ('ipe llatteras, at station 2109, in 142 fathoms (No. 38,41:3).

Pecten fragilis Jeffreys.

> Jeffreys, Am. Mag. Nat. Hist., Nor:, 1876, p. 424 ; Proc. Zool. Sor. Lomdon, for 1879 , p. 561, p1. 45 , fig. I.

Station 2115, ofl Cape Hatteras, in 84: fathoms, two specimens (No. 35,566).

It has been taken off the European coast by the Porcupine and Valorons Experlitions, in 1450 to 1750 fathoms; and by the Norwegian Arctic Expedition, in 656 to $1: 353$ fathoms.

Pecten striatus Müller.

```
Müller, Zool. Dan. Prorlr., No. 2994 (t. Jeffreys).
Jeflreys, Brit. Conch., vol. ii, p. 69; vol. v, p. 168, pl. 23, fig. 4.
```

One valve, which has been identified as this species by Mr. Dall, occurred off Martha's Vineyard, at station 949, in 100 fathoms, 1881 (No. 38,179). No other similar specimen has been taken by us.

Avicula squamulosa? Lam.
A small Aviculu, taken alive at the surface at station 2099 (No. 34,781), is referred to this species with some doulut. The shell is rather broad and rounded for the gemus, and but little oblique. The tail (cauda) is almost obsolete, forming only a slightly prominent angle, shorter than the body of the shell, and separated from it only by a slight emargination. The anterior auricle is small and rommed. The byssal notch is narrow and moderately deep. The body of the shell is ormamented with fiom twelve to fourteen radiating rows of long, narrow and slender sealen, which are transversely banded with purple and white. The lines of growth are slightly lamellose toward the margin and the whole surface appears under a lens to be minntely punctate. 'The color is light yellow, becoming white on the umbos, and irregularly and concentrically streaked with reddish brown. The lower valve is concave toward the margin, but has scales and coloration similar to the upper valve.

Total length, 15^{mm}; length of hinge line, $12^{\text {man }}$; height from the rentral to dorsal margin, $11^{\text {mam }}$.

BRACHIOPODA.

Discina Atlantica King.

Kiug, Proc. Nat. Hist. Soc. Dublin, 1868, vol. v, p. 170.
Jeffreys, Am. Mag. Nat. Hist. for 1876, p. 252 ; Proc. Geol. Soc. London, for 1878. p. 415, pl. 23, fig. 7.

Several specimens of this species were taken by the Albatross in 1883. I have identified these with specimens in Mr. Jeffreys' collection, now in the U. S. Natioual Musenm.

Station 2043, in 1467 fathoms, two specimens (No. 38,429); station 2096, in 1251 fathoms, ten specimens (No. 35,170).

According to Jeflieys, this species has been taken off the European coast, in 690 to 1450 fathoms. North Atlantic, on telegraph cable, in 2400 fathoms; near st. Panl lslamd, in 1850 fathoms; off Bermuda, in 2180 fathoms; and in the North Pacific, in 1575 and 2050 fathoms; ofl' the coast of North Australia, in 200 to 1400 fathoms (Challenger Experlition).

Waldheimia cranium (Müller) Davidson.
Terelratula cranium Müller, Zool. Dan. I'rodr., p. 249, 1776.
Jeffreys, Brit. Conch., vol. ii, p. 11; vol. v, p. 163, pl. 19, fig. 1, 1e; Proc. Zool. Soc. London, for 1878 , p. 405.
Watducimiu crunium Friele, The Development of the Skeleton in the Genus Wald heimia, in Archiv. Math. Naturvid., pp. 380-386, pls. 1-3, 1877.

A single living specimen, which Mr. W. H. Dall has identified as this species, was taken by the Albatross, at station 2035, off Martha's Vineyard, in 1362 fathoms. When first taken it was supposed to belong to W^{r}. tenera Jeffreys. No anthentic instance of the ocenrrence of this species on the N. American coast has been recorderl. On the cuast of Enrope it is not uncommon in 30 to 700 fathoms, and ranges from Norway to France. It has also been recorded from Greenland, Northern Asia and Jajnin.

The following two species have not yet been taken south of Labrador, but may be regarded as belonging to the North American fanma.

W'allheimia tenera (.Jeflireys).
Terelrutula tenera Jeffreys, Ann. Mag. Nat. Hist., Sept., 1876, p. 250; Proc. Zool. Soe. London. for 1878, p. 405 , pl. 22, fig. 7.

This species was taken by the Valorons Expedition, far ofl the coast of Labrador, in 1450 fathoms, N. lat. $56^{\circ} 11^{\prime}$, W. long. $37^{\circ} 41^{\prime}$. It has not yet been recorded from any other locality, but is likely to oceur off our coast at similar depths.

Atretia fromon Jeflireys.
Amn. Mag. Nat. Hist., Sept., 1876, p. 251 ; 1'roc. \%ool. Soc. London, fur 1878, p. $412, \mathrm{pl} 2: 3$, fig. 4.

This species was recorded by Jeftreys, from off the coast of northern Labrador, N. lat. $59^{\circ} 10^{\prime}, 1 W^{\circ}$ long. $50^{\circ} 25^{\prime}$, in 1750 fathoms, and also from N. lat. $56^{\circ} 11^{\prime}$, W. long. $37^{\circ} 41^{\prime}$, in $1+50$ fathoms.

On the Emopean const it has been taken, according to Jethreys, at several localities, in 650 to 1750 fathoms, and off Maroce and the Azores, in 1192 to 2199 fathoms.

Adidenda.

After the preceding pages were mostly in type, an additional lot of mollusea, dredged in 1883, by the Albatross, mostly from off Cape Hatteras, was received from the National Museum. It contained many additions to the list. A few of the most important ones are here included.

Octopus Carolinensis Verrill, sp. nov.
Body, in the alcoholic specimen, rather small, somewhat oblong, obtusely ronuded posteriorly and slightly emarginate beneath. Head large, and with the basal web larger than the body. Eyes large and prominent, occupying nearly the whole of the sides of the head, and in contact, or nearly so, dorsally. Entire surface of the body, head and upper surface of the umbrella and arms covered with minute but prominent verruce, which are somewhat larger and more crowded on the back than beneath. There are no cirri on the back nor above the eyes, but the upper eyelid is covered with small verrnere like those of the back, and is marked with radiating wrinkles. Siphon moderately long and rather slender. Arms angular, long, slender; the two lateral pairs about equal in length; the ventral and dorsal pairs about equal in length and slightly shorter than the lateral; the ventral arms are a trifle longer than the dorsal and appear to have the suckers a little larger. The web is more than one-fourth the length of the dorsal arms, and extends farther ont between the lateral arms than between the ventral or dorsal. A rather wide marginal membrane runs along the arms, even to the tips; it is most developed on the lower side of the lateral arms. The suckers are moderately large, rather closely arranged in two regular rows, and diminish very regularly from near the base to the very slender tips of the arms.

Length of body, 22^{mm}; its breadth, 20^{mm}; breadth of the head, the same; length from the posterior end of the borly to edge of web between dorsal arms, 45^{mm}; length of dorsal arms from month, 64^{mm}; of 2 d pair, 72^{mm}; of 3 d pair, 70^{mm}; of 4 th pair, 66^{mm}; diameter of dorsal and lateral arms, 4.5 mm ; diameter of largest suckers, 2^{mm}.

Color, in alcohol, rather dark purplish brown abore, due to abundant, closely crowded, minute chromatophores; lower surface, yellowish white, rather thickly specked with orange and brown chromatophores. Inner surface of arms, suckers and eyelits white.

Station 2109, oft Cape Hatteras, in 142 fathoms (No. 35,673). One female.

Trans. Conn. acad., Vol. VI.

Octopus gracilis Verrill, sp. nov.
Size of our only specimen small. Body slender, elongated, broadest just back of the gill openings, obtusely rounded posteriorly. Whole surface, above and beneath, smooth, with neither cirri nor verrucæ. Head moderately large. Eyes rather large and prominent, with smooth lids. Umbrella small, the web extending only a short distance and about equally between the dorsal and lateral arms. Arms very slender, elongated, tapering to very thin tips, the third pair much longer than the two upper pairs, but all of about the same thickness at base. The dorsal arms are not half the length of the third pair; the second pair is but little longer than the dorsal and about the same in thickness; the ventral arms are both broken off near the base. The suckers are small and diminish very regularly from the base to the tip of the arms. Those on the two lower pairs of arms are rather more openly arranged, the spaces between the consecutive suckers, being about double that on the upper arms, while the two rows are closer together; on each of these arms three to five of the suckers near the base stand nearly in a median line, which is not the case on the upper pairs of arms.

Length of body, 11^{mm}; greatest breadth, 7^{mm}; breadth of head, 6.5^{mm}; from posterior end of body to edge of web between the arms, 17^{mm}; length of dorsal arms from month, 19^{mm}; diameter near base, $1 \cdot 3^{\mathrm{mm}}$; length of 2 nd pair, 21^{mm}; length of 3 rd pair, 42^{mm}.

Color, in alcohol, yellowish white, covered with large purplish brown chromatophores, darkest on the upper surface of the head, between the eyes. Inner surface of the arms and suckers yellowish white with a purplish spot in front and behind the base of each sucker.

Station 2084, in 1290 fathoms, one specimen, female (No. 38,431).
This specimen is probably young of a species that grows to a larger size. It differs, however, from all deseribed species in the remarkable elongation of the third pair of arms compared with the first and second pairs; all the arms are also remarkably slender, and the body is peculiarly elongated and smooth. It is very certain that it is not the young of any of the known species.

Bela Rathbuni Verrill, sp. nov.
Shell large, rather stout, sub-fusiform, with an elevated acute spire, forming more than half the total length of the shell. Whorls seven besides the nuclens, moterately convex, with in impressed, not very oblique suture. The whorls of the spire are pretty strongly angulated or carinated a little above the middle by a revolving
carina, which appears double at the summit, and slightly nodulons where it is crossed by the longitudinal lines. Above the carina there is a rather wide, sloping, flattened or slightly concave subsutural band, which is crossed by somewhat raised, moderately excurved lamellæ, parallel with the lines of growth and with the sinus in the lip; there is also a rather faint revolving cingulus a little below the middle of the band. Below the principal carina there is a rather wide concave interspace, which surrounds the middle or most prominent part of the whorls, and is bounded below by a carina like the upper one, but not quite so strong; anterior to this there are, on the body-whorl and siphon, numerous similar double revolving cinguli, decreasing in size and becoming closer anteriorly; of these there are about twelve above the base of the siphon; the concave interspaces between the upper ones are abont equal in width to the cinguli. The whole surface is covered by numerous slightly raised, longitudinal lines, which are parallel with the lines of growth and are most conspicuous in the interspaces between the cinguli. The apex, in our single specimen, is badly eroded. The aperture is narrow-ovate, not very large, with a distinct obtuse angle at the base of the columella, which is rather short and nearly straight. The siphon is short and straight, distinguished from the body-whorl only by a slight modulation. The canal is short, straight and rather open.

Length, withont the nuclear whorls, 27^{mm}; breadth, 13^{mm}; length of aperture, 13^{mm}; its breadth, 5^{mm}.

Station 2105, off Chesapeake Bay, in 1395 fathoms (No. 35,704), one dead specimen.

The single specimen of this species is considerably eroded, so that the sculpture, especially the longitudinal lines, appears more strongly marked than it would in a fresh specimen. Perhaps the double character of the revolving carina is more obvious for the same reason. They may originally have been more elevated and sharper. The species bears but little resemblance to any other known from our coast, but the character of the sculpture is not unlike B. bicarinata, but the largest specimens of the latter are pygmies, in comparison with the present species.

Urosalpinx Carolinensis Verrill, sp. nov.
Shell small, pretty regularly fusiform, with an elevated, rather acute spire, which forms nearly one-half the total length of the shell. Whorls six to seven moderately convex, with an impressed suture. The sculpture consists of about twelve rather prominent, stont longi-
tudinal ribs, which run nearly straight across the whorls, and on the last whorl extend to the base of the siphon; these are separated by deeply concave intervals of about the same width. The whole surface is covered by strongly marked revolving cinguli, which cross both the ribs and their interspaces, and thicken so as to form small, romded nodules where they cross the rilbs; these are separated by interspaces of about the same width, in the middle of which there is a much smaller, thin revolving eingulus, alternating pretty regularly with the larger ones around the periphery. On the anterior part of the body-whorl, and sometimes at the periphery, there are two or three small revolving cinguli in some of the interspaces. On the pemultimate whorl there are usually five to seven of the primary cinguli, and on the body-whorl and siphou there are about eighteen to twenty. The whole surface is also covered, in perfect specimens, with fine, slightly elevated, wavy lines of growth, which are most conspicuous on the intervals between the ribs; they are usually worn off from the more prominent parts of the ribs and nodules. The nucleus consists of about two and one half regularly coiled whorls; the first two are small, smooth, translucent and somewhat lustrous; the last is covered with rather faint revolving lines, crossed by the lines of growth, which gradnally merge into the longitudinal seulpture of the normal whorls, there being no very distinct demareation between the nucleus and the next whorl. The apical whorl is minute, regularly inereasing. Aperture elongated, ovate-fusiform; outer lip thin, sharp, regularly curved; imer margin regularly arehed. Collumella somewhat elongated, its margin sinuous and somewhat excurved at the tip. Canal narrow and somewhat elongated, a little curved. Color bluish white. Epidermis very thin, pale grayish or yellowish white.

Length of one of the largest specimens, 15^{mm}; breadth, τ^{mm}; length of aperture, 8^{mm}; its breadth, 3^{mm}.

This species was taken, off Cape Hatteras, at station 2109, in 142 fathoms, in considerable abundance (No, 35,735) ; station 2110, in 516 fathoms (one dead) ; and station 2111, in 938 fathoms, one living (No. 35,764). Possibly the two latter specimens may be due to aceidental misplacement.
This species bears considerable general resemblance to the shallowwater species (U. cinerea), but it is a much smaller and more slender species, with a narrower aperture and longer canal. The senlpture is more simple, there being usually but two sets of revolving cinguli, the larger and smaller ones alternating pretty regularly.

Urosalpinx macra Verrill, sp. nov.
The shell is nearly regularly fusiform, consisting of seven whorls, separated by an impressed suture. The spire is somewhat elongated, regularly tapered, and forms one-half the length of the shell. The nucleus is mamilliform, consisting of about two regularly coiled, convex, rounded whorls, of which the first is nearly as large as the second. The lower whorls are crossed by about ten broad, strongly marked, nodulous ribs. The spiral seulpture consists of stout, rounded, rather elevated, revolving cinguli, which rise into oblong nodules or tubercles in crossing the ribs; of these there are about eight on the body-whorl, besides five or six on the siphon without nodules. On the penultimate whorl there are five or six primary cinguli, of which two or three around the periphery are considerably larger and farther apart than the others; one, below these, is coineident with the suture and makes it undulating. Between the primary cinguli there are three to five much smaller rounded cinguli, separated by thin, incised grooves; these cinguli are about equally prominent on the ribs and interspaces and do not form nodules. The surface is also covered with fine, close, raised lines of growth, except on the nodules, which are smooth at summit. The aperture is ovate, continued anteriorly in a rather long, narrow eanal, and having a slight posterior notch or simus at the suture. The onter lip is sharp and regularly arched; the inner lip is strongly excavated, its curvature posteriorly being greater than that of the outer lip. Columella rather elongated, straight, with a somewhat sinuous inner margin. The canal is straight, somewhat elongated and constricted. Color yellowish white ; interior grayish white.

Length, 13^{mm}; breadth, 5.5^{mm}; length of aperture, 7.5^{mm}; its greatest breadth, $2.5 \mathrm{~mm}^{\text {. }}$

Off Cape Hatteras, station 2109, in 142 fathoms (No. 35,7ヶ2), one fresh specimen.

Sipho hispidulus Verrill, sp, nov.
Shell small, short, broad-ovate, with a rather short, bluntly tapered spire, obtusely rounded at the tip, and with a swollen borly-whorl, constituting the greater part of the shell. Whorls four, rapidly enlarging, convex, with a distinctly carinate, angular shoulder above the middle, above which there is a coneave subsutural band, separated from the suture by an angular, interrupted revolving ridge, next the suture. Besides these two nodose, revolving carinæ, there
are two additional ones, nearly as strong, around the periphery, and one or two faint ones on the subsutural band. On the last whorl there are eight or nine revolving carine below the shonder, besides six or seven on the siphon. The longitudinal senfpture consists of numerons, rather narrow, angular, longitndinal ribs, which run nearly straight across the whorls, parallel with the lines of growth, which are rather conspicuous, distinctly raised and lamelliform, covering both the ribs and their interspaces. The ribs in crossing the revolving carina form small, rounder or subconical nodules, of which those on the shoulder and on the sutural earina are the most prominent and most compressed. The ribs are continued across the subsutural band, on the lower whorls, in the form of thin, raised lamellae, somewhat larger than the intervening lines of grow th; but on the upper whorls the ribs, across the entire breadth, are thin, lamelliform, and bent forward, rising in the form of small angles in crossing the revolving cinguli. The surface is covered by a closely adherent epidermis, which bears minute, sparsely scattered hairs, especially along the summits of the revolving cinguli. The nucleus is minute, regularly coiled, depressed, and largely covered by the succeeding whorl. The first or apical whorl is smooth and translucent, but on the second the normal sculpture is gradually developed. The aperture is rather broad-ovate, more than half the length of the shell. Columella is straight, with a strongly siunous inner margin. The canal is rather short and broad, not constricted. The operenlum is thin, yellowish white, translucent, ovate, somewhat pointed posteriorly, and slightly tmmeated on the posterior part of the onter margin; the nuclens is at the extreme posterior tip. Color of the shell white, with a pale flesh-colored tint on the spire.

Length, $7 \cdot 5^{\mathrm{mm}}$; breadth, 4^{mm}; length of aperture, 5^{mm}; its breadth, 2^{mm}.

Station 2038, N. lat. $38^{\circ} 30^{\prime} 30^{\prime \prime}$, W. long. $69^{\circ} 08^{\prime} 25^{\prime \prime}$, in 2033 fathoms, one living specimen (No. 34,840).

The generic relations of this shell are somewhat donbtful. In general appearance and senlpture it resmbles certain species of Belu, but the character of the muclens and the hairy epidermis, together with the character of the operenlum, indicate that it belongs to or near Sipho. This is also inticated by the fact that there is no distinct sinus in the outer lip, nor are the lines of growth distinctly excurved in crossing the subsutural band. In size and shape the shell resembles Bele hebes and Gymmobela curta, var. angulata, from both of which it differs decidedly in senlpture. The specimen described may, however, be the young of a much larger species.

Cingula Sandersoni Verrill, sp. nov.
Shell moderately large for the genus, thin, fragile, long-ovate, with a. rather tall, somewhat turoted, acute spire. Whorls six to seven, strongly and evenly convex, separated by a deep, impressed, simple suture. Body-whorl large, rather swollen, well rounded, and constituting more than one-half the length of the shell. Nuclear whorl small, smooth, somewhat prominent, regularly coiled. Base rather strongly produced, destitute of an umbilicus, but sometimes with a slight chink, produced by the everted edge of the inner lip. Aperture pretty regularly ovate, rather broad, obtusely rounded in front, and with the posterior end narrowed and sometimes forming a slight sutural sinus; onter lip thin and regularly curved; inner lip contimous, usually with a thin, free edge along the body-whorl. The sculpture consists of very fine, close revolving lines, visible with a lens, and of still finer, but usually distinct lines of growth, which interrupt, more or less, the spiral lines.

Color white in our specimens, all of which appear to have been dead when dredged.

Length, $4^{\text {mm }}$; breadth, $2^{\text {mm }}$; length of body-whorl, $2 \cdot 5^{m m}$; length of aperture, $1 \cdot 8^{\mathrm{mm}}$. A large specimen, with broken apex, is $2 \cdot 7^{\mathrm{mm}}$ broad; length of body-whorl $3 \cdot 5^{\mathrm{mm}}$. Most of the specimens are smaller than those measured, and some are more slender in proportion.

Station 2109, off Cape Hatteras, in 142 fathoms, numerons specimens (No. 35, 447).

In form, this species resembles C. turicula Lea, but the latter is described and figured as smooth and umbilicated. It is evidently allied to C. aculeus, but differs in its stonter form, deeper sutmre, and much finer sculpture. The senlpture is somewhat similar to that of C. leptaleu, but the latter is very different in the form of the shell and aperture. Dedicated to Mr. Sanderson Smith, by whom it was dredged.

Rotella cryptospira Verrill, sp. nov.
Shell minute, strongly depressed, with the spire not at all elevated and mostly concealed by the overlaping of the last whorl. Surface smooth and polished, without any lines of growth. The last whorl constitutes nearly the entire shell, overlaping and nearly concealing the previous whorls, but sometimes leaving a slight central depression in which the minnte spire is imperfectly visible. Base flattened or but slightly convex; the nmbilical region is completely covered by a
small smooth callus. The aperture is oblique, nearly circular, encroached upon a little by the body-whorl. The lip is slightly thickened, with the margin rounded. In some specimens there is a slight, angular, posterior sinus, at the suture, and sometimes the inner lip is a little thickened in the umbilical region. Color of all our specimens white, but none of them appear to have been living, although many are fresh and have a polished surface.

Greatest diameter, 2.5^{mm}; height, 1.5^{mm}; diameter of the aperture, abont 1^{mm}.

Off Cape Hatteras, station 2109, in 142 fathoms (No. 3:3,731), about thirty specimens.

This species bears some resemblance to R. anomala D'Orb., but is pecnliar in having the whorls of the spire concealed, or nearly so, by the last whorl.

Ethalia multistriata Verrill, sp. nov.
Rotella striatu? D'Orbigny, Moll. Cuba, atlas, pl. 18, figs. 29-31.
This shell, although resembling in most respects that figured by D'Orbigny, differs in being more depressed, with a lower spire and less prominent base. The spiral lines are much finer and more numerons, and the inner lip is distinctly thickened opposite the umbilicus.

Shell small, much depressed, with the spire rising but very little above the body-whorl, and with the base distinctly flattened. Whorls about three and one half, separated by a distinct and slightly impressed suture. The upper side of each whorl is depressed, but the periphery is very convex and obtusely rounded. The nuclear whorl is moderately large, smooth, translucent, and regularly coiled. The entire upper surface, helow the nucleus, and most of the base, are covered ly very numerons fine, impressed, revolving lines, with interspaces which are a little wider than the lines themselves. On the inner half of the base, around the umbilicus, the spiral lines are obsolete. Just below the sutme there is a stronger groove or slight depression, defining a small, subsutural, slightly raised ridge. The surface is also covered with very fine, but distinct, impressed lines of growth, which, in erossing the spiral lines, give them a slightly wavy or punctate appearance, and sometimes produce a minute and feeble reticulated structure. The aperture is very oblique, broader than long, with the anterior border somewhat flattened, the outer side very convex, and with a slight, angular, posterior eorner, or sutural simus, below which the body-whorl projects slightly into the aperture,
while the colnmella-margin is regularly excurved. The imner lip is continued across the body-whorl in the form of a thin, closely adherent callus deposit; the columella-margin, in advance of the umbilicus, is distinctly thickened, but does not form a tooth, nor a distinct angle. The umbilicus is moderately large and deep, showing part of the whorls.

Height of the largest specimen, 2.5^{mm}; breadth, $4 \cdot 5^{\mathrm{mm}}$; length of aperture, $1 \cdot 7^{\mathrm{mm}}$; breadth, 2^{mm}.

Off Cape Hatteras, station 2109, in 142 fathoms, sixteen specimens, all dead, but fresh (No. 35,733).
'This species resembles Rotella striata D'Orb. It is a much more depressed shell than he figures, and the spiral lines appear to be much more numerous and finer, nor does his figures show any distinct thickening of the columella-margin.

Notes on Species prevrousiy recorded.
Mastigoteuthis Agassizii Verrill.
Bull. Mus. Comp. Zool., vol. viii, p. 100, pl. 1, fig. 1; pl. 2, figs. 2, 3-3e, 1881.
These Transactions, vol. $\mathrm{r}, \mathrm{p} .297$, pl. 47, pl. 49, figs. 2, 3-3e, 1881.
Additional specimens of this species were taken in 1883, at station 2050, in 1050 fathoms; station 2072 , in 858 fathoms; station 2076 , in 906 fathoms.

It had not previously been taken by the Fish Commission.

Chiroteuthis lacertosa Verrill.
These Transactions, vol. v, pages $299,408,450$, pl. 47, figs. $1,1 b$; pl. 56, figs. $1-1 f$.
Additional specimens of this species have been taken at station 2074, in 1309 fathoms; station 2098, in 2221 fathoms; station 2094, in 1022 fathoms, and mutilated arms from a fish stomach, from station 2099, in 2949 fathoms.

Calliteuthis reversa Verrill.
These Transactions, vol. v, p. 295, pl. 46, figs. 1-1 $b, 1881$.
Additional specimens of this species were taken in 1883, at station 2034, in 1346 fathoms; station 2039, in 2369 fathoms; station 2041, in 1608 fathoms (head only) ; station 2076 , in 906 fathoms.

The young specimen of this species, from station 2076, has one of the tentacular arms preserved. These arms have been absent in all the other specimens that I have examined, and seem to be very easily detached. In this example the tentacular arm is long, very slender,

Trans. Conn. Acad., Vol. VI.
being about twice the length of the sessile arms, and not half as thick at the base as the smallest of the sessile arms. The proximal half is strongly flattened, and tapers from the base outwardly. The distal half is much more slender and is somewhat angular or triquetral, becoming somewhat sub-cylindrical and very slender toward the club, which is well developed, narrow-lanceolate in form, somewhat expanded toward the base, and gradually tapered to the tip. The slender distal half of the arm bears a row of very small, rather distant, smooth edged, sessile suckers, alterwating with minute tubercles on its inner surface; these are cevidently intended, as in allied genera, for attaching the two arms together. Close to the base of the club, these sessile suckers become closer and more numerons. The club itself bears, on its broader, basal portion, about six rows of suckers. One row, which is nearly central, consists of abont seven, rather broad, cup-shaped suckers, decidedly larger than any of the others, and of these, three central ones are decidedly the largest ; their horny rings are very finely and sharply denticulate around the entire margin, which is but little oblique; just below the horny ring there is a constriction, and the borly of the sucker is considerably swollen. Alternating with these are other similar, but smaller, suckers, forming a second median row; on each side of these are two marginal rows of still smaller and somewhat more oblique, cup-shaped suckers. The distal half of the club is crowdedly covered with numerons, small suckers, which are apparently arranged in six rows, and decrease gradually in size to the tip of the club, the number of rows apparently decreasing to four, and the size becoming very minute near the tip, which is very narrow, simple, and, in this specimen, strongly curled spirally. These tentacular arms differ in color from the rest of the arms, the imer surface being orange, the elges yellowish white, and the outer surface covered with definite orange-brown chromatophores, while the other arms are darker externally, owing to the inuch more erowded chromatophores, and are covered with prominent verrnce, each of which is marked on one side with dark brown, while the tip is white; the imer surface of the sessile arms is deep brown, and the suckers are white at base, tinged with orangebrown near the margin. The general color of the body and head is like that of the outer surface of the arms, but as in the original speciment, the color is muth deeper and the verruca more mmerous on the ventral surface than above. The candal fin is thin, translucent, and destitute of color, except close to the base, where there are a few orange-brown chromatophores. The lobes of the fin extend back
considerably beyond the end of the body on each side, but are united to its extreme tip, leaving a distinct noteh beyond the end of the tail. Each half of the caudal fin, taken by itself, is somewhat triangular in form, with the angles rounded, or rather it is between semicircular and triangular, the length longitudinally being decidedly greater than the distance from the base to the lateral border.

The specimen above described is 27^{mm} long, from the end of the body to the front edge of mantle, above; length, from end of body to base of dorsal arms, $34^{\text {mm }}$; breadth of body and head, 12^{mm}; breadth across caudal fin, 18^{mm}; length of caudal fin, 9^{mm}; length of third pair of arms, 20^{mm}; length of tentacular arm, 67^{mm}.

Brachioteuthis Beanii Verrill.

These Transactions, vol. v, p. 406 , pl. 50 , figs. $3-3 b$; pl. 56 , figs. $2-2 a, 1881$.
An additional specimen, considerably mutilated and apparently from a fish stomach, was taken at station 2115, off Cape Hatteras, in S43 fathoms.

Desmoteuthis tenera Verrill.

These Transactions, vol. v, p. 112, pl. 55, figs. 2-2d; pl. 56, fig. 3, 1881.
An additional specimen of this species was obtained in 1883, at station 2034 , in 1346 fathoms.

The original specimen was taken in 388 fathoms.

Rossia megaptera Verrill.
These Transactions, vol. v, p. 349, pl. 38, fig. 1; pl. 46, fig. 6, 1881.
Body large, stout, swollen, well rounded posteriorly, longer than broad; integument entirely smooth and soft, but not flablyy; fins large, not very prominent, most so in front of the center, thick, soft, and fleshy, colored like the body; the line of attachment extends from near the front edge of the mantle to abont the posterior fifth of the body, the anterior end being more dorsal than the posterior ; the front end of the fin is free at base and projects forward considerably beyond the edge of the mantle in a broad, rounded lobe; the outer edge of the fin forms a very broad, even curve, narrowing backward and closely adherent to the body posteriorly. The front dorsal edge of the mantle extends forward in the middle region in a very obtuse angle, and receding in a broad, sinuous curve behind the eyes, it advances again below the eyes, and receles to form a broad ventral notch below the siphon. The head is very large, as broad as
the body, or even broader, with very large prominent eyes; lower lid prominent, a little everted, not much thickened; pupils large, surrounded with a black circle in the preserved specimen. Siphon large, stont at base, rapidly tapering to a small tip. The basal web between the arms is short, extending farthest between the 3 d and th pairs of arms. The arms are rather large, stont, well-rounded externally; those of the $3 d$ and 4 th pairs are larger than the others; the 1 st and $2 d$ pairs nearly equal; all the arms bear two crowded rows of suckers, which are similar in size and arrangement on all the arms, and decrease regularly to the tips. These suckers are moderately large, oblong, very oblique, with a very small orifice; the suckers are thickly specked with small chromatophores, except on the under surface. Alternating with the suckers, on each side there are rather large, fleshy, triangular, oblique, marginal lobes, the acnte inner ends ruming in between the suckers. The tentacular arms are large, rather long and stout, but more slender than the other arms, triquetral, with ronnded corners, and nearly destitute of chromatophores; the terminal chbb is scarcely as wide as the rest of the arm, rather long, narrow-lanceolate in form, tapering to a blunt tip; along the upper margin of the arm, opposite the commencement of the suckers, but well separated from them, there is a sharp, elevated crest or keel, which does not extend to the tip of the arm; the suckers are very small, much smaller than those of the sessile arms, cup-shaped, nearly equal, very numerons, forming eight or more indistinct, crowded rows.

The color is nearly the same over all parts of the body, head and onter surfaces of the sessile arms, except on the lower surface of the head around the base of the siphon, where it is paler. This color in alcoholic specimens is dark brownish purple, due to large numbers of rather large irregular chromatophores scattered on a yellowish white ground-color. The surface in many parts, especially around the eyes and on the dorsal surface of the body, has a glaucous blue tint; the under surface of the head, around the siphon, the tip of the siphon, and the inner surfaces of the arms and suckers are yellowish white, with small scattered chromatophores, which become more numerous on the exposed surfaces of the snckers; onter surfaces of the arms like the body. The tentacular arms throughout are yellowish white, with the exception of a few scattered chromatophores on the outer surface.

Measurements.

Length to end of sessile arms_... 123^{m}.	Length of dorsal arms .-.-. --. -- 43^{m}.
Length of body-.......- 52	Length of 2d pair.-.-.--.-.-.-.-. - 45
Length of head to base of dorsal	Length of 3d pair 50
arms .------------------.-.-- 24	Length of 4th pair.-.-....-.-.-. - 49
Breadth across body aud fins...-- 76	Length of tentacular arms .----- 75
Breadth of body..-.....-.-------- 40	Length of club.....-...-........- 18
Breadth of head..----.-.-.-.-.-. 44	Breadth of club
Diameter of eyes .-...-.-.-.-.-.-- 25	Diameter of tentacular arms . - - - 4 to 5
Diameter of pupil.............-.- 8	Diameter of largest suckers of ses-
Length of fins, longitudinally --- 40	sile arms -------------.---- 15
Length of insertion of fins....-- 35	Diameter of dorsal arms .-.-.--- 6
Breadth of fins, transversely- 18	Diameter of lateral arms .---.-..- 6.5
Insertion of fin to front edge of mantle \qquad 9	Diameter of largest suckers- 2

Station 1124, in 640 fathoms, off Martha's Vineyard, 1882. The only specimen previously known was from off Newfoundland, in about 150 fathoms, probably from a fish stomach.

Alloposus mollis Verrill.
American Journ. Sci., vol. xx, p. 394, 1880; these Transactions, vol. v, p. 366, pl. 50, figs. 1, la, 2, 2a, pl. 51, figs. 3, 4.
This species was taken by the Albatross, in 1883, at station 2034, in 1346 fathoms, one young; station 2036, in 1735 fathoms, fragments; station 2037, in 1731 fathoms (one arm).

At station 2034, in 1346 fathoms, a very young female specimen of this species was taken by the Albatross in 1883. In form and general appearance it differs but little from the large specimens described and figured by me. But the body is relatively shorter and broader, and the chromatophores are larger, more regularly scattered and more distinct.

Total length, 29^{mm}; length of mantle beneath, 10^{mm}; length of body and head to front side of eye, 17^{mm}; breadth of body, 13^{mm}.

A rgonauta argo Linné.

Vêrrill, these Transactions, vol. v, pp. 364, 420.
Plate XXViti, figures $1,1 a, 1 b$.
A young living specimen of this species was captured while swimming at the surface, about 100 miles south of the eastern end of Long Island, by Dr. Kite, surgeon of the Fish Hawk. From this specimen, after it had been in too strong alcohol for two or three days, the figures on Plate xxyin were made. Owing to the strength of the
alcohol the expanded distal portion of the dorsal arms were very badly shriceled. The color of this example, in alcohol, was deep puplish brown above, paler beneath, the chromatophores being most crowded on the upper surface and having a tendency to be arranged so as to form small ocellated spots or circles, which, however, were not very distinct in the preserved specinen.

Octopus piscatorum Verrill.

American Journ. Sci., vol. xviii, p. 470, 1879 ; these Transactions, vol. v, p. 377, pl. 36, figs. 1, 2, 1881.
A good specimen of this species was taken by the Albatross at station 2035, in 1362 fathoms.

Previously all the specimens known had been received from the Gloucester fishermen, who had taken them on the banks off Nova Scotia and Newfoundland.

Eledone verrucosa Verrill.

Bull. Mus. Comp. Zool., vol. viii, p. 105, pls. 5 and 6, 1881 ; these Transactions, vol. v, p. 380, pls. 52 and 53, 1881.
A large male was taken by the Fish Hawk in 1882, at station 1123, off Nantucket, in 787 fathoms. It was taken in 1883 by the Albatross at station 2050, in 1050 fathoms; station 2051, in 1106 fathoms; station 2077, in 1255 ; station 2102, in 1209 fathoms.

The male, from station 1123 , which is larger than the one originally described, had lost the left arms of the 1 st and $2 d$ pairs; the former was in process of being reproduced in the form of a small, conical, white process, with a small row of minute suckers.

The body, while still living, was provided with a fold of skin along the sides and aronnd the posterior end; the back was covered with small papillae, not very distinct while living, and not so large as in the original specimens. The arms were nearly smooth. The lower eyelid was papillose and dark purple in color. The web between the arms, while living, was broader than deseribed in the original examples; the marginal membrane extended to the tips of the arms, and was broadest on the ventral side, so that the tips of the arms were strongly curled by the contraction of the membrane. The hectocotylized arm bears but thirty-nine suckers proximal to the modified tip; the papilla at the base of the modified tip is prominent, conical, with a white groove; the terminal appentage is crossed by about seven faint transverse folds. The color was dark purplish brown, with obseure roundish lighter spots on the dorsal
surface, mostly surrounding the verruca. Although still alive, when brought on deck, this specimen was, of course, much injured, and lived only for a short time.

Three of the specimens taken by the Albatross are sinaller than any previously seen, but have the same general character as the large ones. In life the verruce showed but slightly.

Measurements of the large male specimen above described:

Total leng	$292^{\text {mm }}$	Length of hectocotylized arm	7
From tip of body to center of eye	78	Length of modified tip	1
Breadth of the body	75	Length of spoon-shaped orgau .-	7
Breadth of head across the eyes_	72	Length of ventral arms	197
Length of dorsal arms from mouth	235	Greatest breadth of the lateral	
Length of 2nd pair of arms..-.	250	arm	15
Length of 3rd pair of arms (left side	222	Diameter of the largest sucker.	5

Stauroteuthis syrtensis Verrill.

American Journ. Sci., vol. xviii, p. 468, 1879; these Transactions, vol. v, p. 382, pl. 32, figs. 1-5., 1881.
The Albatross took a very young specimen of this remarkable species at station 2034, in 1346 fathoms.

The total length of this specimen is 21^{mm}; length of head and body, 11^{mm}; length of one of the fins, from base to tip, 9^{mm}; from front to back edge, 3^{mm}. In all essential characters this young specimen agrees well with the larger mutilated specimen originally describert by me. The siphon and branchial opening have the same remarkable form and structure. The interbrachial membrane is nearly as broad as the length of the arms, and as a broad margin, extends to their tips.

The only specimen previously known was taken by the Gloucester fishermen, on Banquerean, off Nova Scotia, in abont 250 fathoms.

Bela mitrula Lovén.
Bela concinnula Verrill, these Transactions, vol. v, p. 468, pl. 43, fig. 15 ; pl. 57 , fig. 11 .
Bela mitrula Bush, Proc. U. S. Nat. Mus., vol. vi, p. 237, 1883.
Dr. H. Friele has sent me typical specimens of Bela mitrula Loven, from the coast of Norway, which appear to be perfectly identical with my Bela concinmula, var. acuta, which is found on the American coast from off Cape Cod to Labrador. Since the typical concinnula seems to be only a variety of the same species, it may be best to designate it as Bela mitrulu, var. concinnula.

Bela Sarsii Verritl.

Verrill, these Transactions, vol. v, p. 484, 1881.
Bush, Proc. U. S. Nat. Mus., vol. vi, p. 237, pl. 9, fig. 8, 1883.
Miss Bush has recorded this species from Labrador, at Forteau Bay, L'anse aul Loup, in 10 to 20 fathoms, and from Murray Bay, mouth of the St. Lawrence River.

These specimens agree well with those from the Norwegian coast.
This species is closely allied to B. impressa Mürch, from Spitzbergen.

Pleurotomella bandella (Dall).
Pleurotoma (Mangilia) bandella Dall, op. cit., p. 59, 1881.
Pleurotomella Diomedere Verrill, this volume, p. 152, 1884.

Plate XXXI, figures 5, $5 a$.

After the earlier pages of this article had been printed I had an opportunity to compare our species of Plenrotomida with those obtained by the Blake Expedition in the West Indian seas, and now in the hands of Mr. Dall, who bas described most of them, and who kindly aided me in making the comparisons.

The species described above as P. Diomedece appears, on comparison of the type-specimens, to be identical with P. bandella Dall. The other species described by Mr. Dall all appear to be distinct from those described by me, but our P. Emertoni (p. 154) is identical with one of his undescribed species.

Mangilia cerina (Kurtz and Stimpson) Verrill.
These Transactions, vol. v, p. 488, fig. 1, 1881.

Plate NXiN, figures 16, $16 a$.

Anmal translucent white, with flake-white specks on the foot and other parts. Foot short, truncate, or obtusely romided in front, with the angles little or not at all prominent. Tentacles rather long, very slender, with conspienons black oyes close to the ends, the tips extending slightly beyond the eyes, as small papilla. Head small. No operculum.

Found living in Buzzard's Bay, at Quisset, Mass., in 3-5 fathoms, Sept. 4, 1882.

Taranis Morchii, var. tornatus Verrill, nov.
Two specimens from station 2075, in 1255 fathoms, are somewhat stonter than those previonsly obtained, and have the principal carina, forming the shoulder, larger and more prominent than usual, but it bears only very minnte tubereles, corresponding to the very fine and close riblets which cross the wide and abruptly sloping subsntural band obliquely, and are about twice as nmmerons and much finer than in the ordinary variety. On the last whorl there are about six prominent, distant, revolving cinguli below the shoulder, besides some faint ones on the base of the canal; the space between the uppermost of these and the shoulder-carina is greater than usnal. The lines of growth are muel finer than in the ordinary form and do not take the appearance of riblets on the last whorl, nor do they render the cinguli nodulous. The suture is sharply impressed, and the raised revolving line usually present just below the suture is absent. This form, therefore, is characterized by the relative predominance of the spiral senlpture over the transverse, and by the absence of distinct nodules at the crossing of the two systems of lines.

Length, 5^{mm}; breadth, 3^{mm}; length of aperture, $2 \cdot 6^{\mathrm{mm}}$; its breadth, 1^{mm} 。

Sipho lividus (Mörch).

Verrill, these Transactions, vol. v, p. 507, 1881
Bush, Proc. U. S. Nat. Mus., vol. vi, p. 238, pl. 9, fig. 12, 1883.
Miss Bush has recorded this species from Labrador, at Henley Harbor and Dead Island, in 1 to 8 fathoms.

The figure referred to represents the same form as that which was described by me from the Gulf of St. Lawrence, and which has been referred by Whiteaves and others to S. Spitzbergensis.

Tritonofusus cretaceus (Reeve.)
Tritonofusus Kröyeri Verrill, these Transactions, vol. v, p. 510 (non Möller.)
Tritonofusus cretaceus Bush, Proc. U. S. Nat. Mus., vol. vi, p. 238, 1883.
Miss Bush has recorded this species from Labrador, in 3 to 10 fathoms.

A comparison of our American shell with specimens of the true 7. Kröyeri, from the coast of Norway, sent to me by Dr. Friele, shows that they are two entirely distinet species.

Trans. Conn. Acad., Vol. VI.
JULY, 1884,

Volutopsius Norvegicus (Chemn.) Mörch.
Terrill, these Transactions, vol. v, p. 511, 1881.
Shell ovate in outline, with a large expanded mouth. Spire short; whorls five, rapidly enlarging. Nuclear whorls smooth, rather large, mammilliform, making the spire obtuse at tip, the two first whorls increasing but little in breadth. The body-whorl is rery large, with the shoulder well rounded, suture well-marked. Aperture large, almost semicireular, the outer lip regularly curved, the margin everted and sharp. Columella with a concave bend in the middle and a slightly prominent twisted lobe at the base of the siphon, which is short, broad, open, and but slightly eurved. No obvious seulpture, except rather conspicuous lines of growth, parallel with the edge of the lip. A large, smooth, glazed area in front of the columella on the body-whorl. Color externally white, tinged with brown; nneleus yellowish; interior pink, the edge of the lip flesh-color.

Length, 72^{mm}; breadth, 44^{mm}; length of aperture, 54^{mm}; its breadth, 24^{mm}; diameter of the first nuclear whorl, 6^{mm}.

From the Flemish Cap, E. of Grand Bank, in 75 fathoms, Wm. Garrett, 1878.

Buccinum Tottenii Stimpson.

Verrill, these Transactions, vol. v, p. 496, 1881.
Bush, Proc. U. S. Nat. Mus., vol. vi, p. 239, pl. 9, fig. 13, 1883.
This species has been recorded by Miss Bush from Henley Harbor and Temple Bay, Labrador, in 8 to 15 fathoms.

The excellent figure referred to, illustrates the typical, well developed form of this species.

Anachis Haliæeti (Jeffreys).
Columbella haticeeti Jeffreys, Brit. Conch., iv, p. 356, 1867.
Anachis Italueeti Verrill, Amer. Jour. Sci., vii, pp. 405, 503, 1874.
P'yrene costulata G. O. Sars, Moll. Reg. Aret. Norvegiex, p. 252, pl. 23, fig. 16 (non Fusus costulatus Cantraine.)
Anachis costulata Verrill, theso Transactions, vol. v, p. 513, pl. 43, fig. 7.
Columbella haliveti Jeffreys, Proc. Zool. Soc. London, for 1883, p. 392 (synonymy.)
Although Mr. Jeffreys, in some of his recent papers, followed Monterosato and G. O. Sars in the identifieation of this species with the Prusus costulatus of Cantraine, in the paper last quoted he states that the true F. costulatus belongs to the genus Pleurotoma. He therefore restores the name, Thulicecti, for this speeies. I have no
reason to doubt the correctness of this decision, and therefore follow him in making this change.

Dolium Bairdii Yerrill and Smith (MSS.)
Verrill, these Transactions, vol. v, p. 515.
Plate XXIX, figures $2,2 a, 2 b$.
This species was taken in 1882 at station 1092, in 202 fathoms, one young dead; station 1097, in 158 fathoms, two young dead, with large fragments; station 1109 , in 89 fathoms, one young dead; station 1113, in 192 fathoms, one living; and fragments wore also taken at stations $1117,1120,1121$, and 1154 , in 89 to 234 fathoms. An. unusually large living specimen was taken by the Albatross at station 2004 , N. lat. $37^{\circ} 19^{\prime} 45^{\prime \prime}$, W. long. $74^{\circ} 26^{\prime}$, in 98 fathoms, March 23d, 1883 (No. 35,655).

Mr. Dall thinks this species is identical with one from the Mediterranean.

Assiminia modesta (Lea) Verrill.
Cingula modesta H. C. Lea, Proc. Boston Soc. Nat. Hist., i, p. 205, 1845 ; Boston Journ. Nat. Hist., v, p. 288, pl. 24, fig. 5, 1845.
Assiminia Grayana Verrill, Amer. Journ. Sei., xx, p. 250, September, 1880 (non Leach) ; Trans. Conn. Acad., v, p. 525, pl. 58, fig. 7, 1882.
Shell small, conical, with a regularly tapering, acnte spire, with a smooth, somewhat glossy surface, usually light chestnut-brown in color: Whorls about six in the largest specimens, moderately convex, with the suture well impressed, but not deep, usually showing by translucency an internal sutural line just below the suture. There is no distinct senlpture unless microscopic and very indistinct lines of growth. Apical whorl very minute, regularly spirally coiled, slightly prominent, so as to produce a very acute apex. Last whorl very large, somewhat swollen, forming more than half the length of the shell. Base moderately produced, without any mombilicus, and destitute of sculpture. Aperture short-ovate, with an acute angle posteriorly, broadly rounded in front, with the inner margin oblique and only slightly sinnous; the outer lip is thin and sharp, convex and evenly rounded; the colnmella-margin is excurved, with the edge thickened and slightly everted, closely covering the umbilical region ; it joins the anterior margin in a regular curve and continnes along the margin of the body-whorl in a slightly sinuous line, forming there a distinct but closely adherent inner lip, consisting of a thin deposit continnous with the deposit of the mbilical region. Operenlum subspiral, translucent, chestunt-brown. The shell is
usually light chestnut-brown, more or less lustrous, somewhat translucent, but it is sometimes tinged with greenish or grayish brown, in color conforming to the sea-weeds on which it lives.

Length of the largest specimens, about 3^{mm}; breadth, 2^{mm}; length of body-whorl, about 2^{mm}; of aperture, about 1^{mm}.

Newport, R. I., at high water mark, among decayed sea-weed, 1880 ; Huntington, L. I., between tides, (coll. Telkampff') ; near Brooklyn (Lea.)

This species, when found by me in 1880 , was identified with A. Grayaua, but the specimens obtained at that time were immature. An examination of larger and more mature specimens, from Huntington, L. I., and a direct comparison with a series of specimens of A. Grayana, sent to me by the Rev. A. M. Norman, has convinced me that, though closely related, they must be considered distinct species, unless A. Grayana be more variable than is indicated by European writers. Our species, when with the same number of whorls, is less than half the size of A. Grayuna, and it has, proportionally, a much more slender form, with a more acute spire and more minute nucleus. The aperture is much smaller and narrower and the whele shell is much more delicate in form and texture. The color is a.clearer chestnut-brown than any of the European specimens which I have seen, though this is, perhaps, a character of no great importance. In habits and in the situations in which it is fomm, it agrees precisely with the European species, with which it also agrees in the structure of the soft parts, as shown by the figure formerly published by me.

Eulima stenostoma Jeffreys.
Verrill, these Transactions, vol. v, p. 536.
This species, not previously known on our coast south of the Gulf of St. Lawrence, was taken in 1883 by the Albatross at stations $2043,2076,2084,2096,2103$, in 906 to 1467 fathoms, and at station 2115 off Cape Hatteras, in 843 fathoms.

Margarita regalis Verrill.

These Transactions, vol. v, p. 530, pl. 57, fig. 37.
Specimens of this species were taken by the Albatross considerably exceeding in size those originally described by me. By Jeftreys (Proc. Zool. Soc. London for 1883, p. 98) this species has been identified as Trochus Ottoi Philippi,* which he also considers identical

[^4]with T. rlysus and T. cegleës Watson and T. Veillunti Fischer. The first named is fossil in the Pliocene of Calabria and Sicily. The recent form has been taken off the European coast, from off the Faroe Islands to the Bay of Biscay and Mediterranean, and by the Challenger in the West Indies, off St. Thomas.

The typical specimen of T. cegleës Watson, which I have examined, although having some resemblance to our shell, differs so much in many respects that, considered by themselves, they certainly appear to me very distinct species. I have not seen the fossil T. Ottoi, and am, therefore, mable to express any decided opinion as to the identity of the recent and fossil forms, especially as Mr. Jeffreys himself admits a considerable amount of variation in respect to the sculpture and umbilicus. These forms are doubtless closely allied, if not identical. T. cegleës appears to be nearer our M. lamellosa, with which Mr. Dall has even united it.

Cyclostrema Dalli Verrill, var. ornatum, nov.
Cyclostrema Dalli Verrill, these Transactions, vol. v, p. 513, pl. 57, fig. 39.

Plate XXXiI, figure 17.

Among the specimens of this species there is one from station 2115, in 843 fathoms (No. 35,610) which, although agreeing in form and condition of the umbilical region with the original type, is very peculiarly marked on the base by thin, impressed lines, running obliquely and crossing the concentric spiral lines at a large angle, so as to produce a sort of "herring-bone" pattern as shown in our figure. This form, if persistent, should undoubtedly receive a varietal name. It may therefore be designated provisionally as var. ornatum.

This species would probably belong to the genus Tharsis, according to Jeffreys' classification, but as already stated, I doubt the validity of that generic division.

Fissurella Tanneri Vorrill.
Proc. U. S. National Mus., vol. v, p. 333, 1882.
Plate XXIX, figures 13, $13 a$.
This species is closely allied to Fissurella redimicula Say,* originally described from the Miocene of Maryland. The latter, however, judging from three specimens which I have examined, is distinet, although it is probably the direct ancestral form from which the modern species has been derived. The fossil specimens are

[^5]relatively shorter and broader and more regularly elliptical than the recent ones, as well as higher and more conical; they also have the aperture more central. In sculpture the two forms are very similar, but the fossil specimens have the senlpture decidedly coarser, with the radiating lines stonter, more elevated, and more unequal, one stronger rib altemating usually with three to five smaller ones, while in F. Tanneri no such marked inequality exists. The apical pore and the internal callus are very similar in the two shells, but the pore is perhaps a little larger in the living form. A larger series of both the living and the fossil form might, however, show that they are both variable, and possibly grade into one another.

Addisonia paradoxa Dall.
 Verrill, these Transactions, vol. v, p. 533.
 ```Plate XXIX, figures 10, 11, 11a, 11b.```

Mr. Dall has called my attention to the remarkable peculiarities in the structure of the animal of the male, which differs widely in appearance from the female (see our fig. 11b), owing to the fact that the large verge is closely mited at base with the right tentacle.

Additional suecimens were taken in 1882, living, at stations 1098 , $1109,1110,1124$, in 89 to 640 fathoms; and in 1883, at station 2011, in 81 fathoms, off Chesapeake Bay.

Choristes elegans, var. tenera Verrill.
These Transactions, rol. v, p. 541, pl. 58, figs. 27, 27 a.

Plate XXIX, figures $9,9 a, 9 b$.

This species was taken in 1882 at station 1096 , in 317 fathoms; station 1124 , in 640 fathoms ; and 1154, in 193 fathoms (one dead).

At station 1124 about twenty-five living specimens ocenred in the empty egg-case of a skate (Ruiu sp.), in the same manner as those taken in 1881. They were associated with a limpet, Propilidium pertenue? Jeffreys.

Young specimens of various sizes occurred in these instances with the adnlts. 'three of these young specimens are figured on our phate 29. The youngest examples noticed coinsisted of about one and a half whorls; these are very small, white, regnlarly coiled, with the whorls well-rounded and inereasing rapidly in size. The aperture is nearly round and somewhat oblique, with the lip perfectly contimous. The mbibicus is rather large and open and shows the previous whorls to the apex.

Cadulus Jeffreysii? Monterosato.
Verrill, these Transactions, vol. v, p. 559, 1882.
A number of good specimens, referred to this species with doubt, were taken off Cape Hatteras, at station 2115, in 843 fathoms. These are pretty regularly fusiform and taper gradnally to both ends, the posterior end being decidedly smaller than the anterior. The inner or ventral side is usnally nearly straight, but often somewhat concave, while the onter or dorsal side is pretty strongly and nearly regularly curved. The aperture is decidely obliquely trmcated, but is nearly circular in a direct end-view. These specimens differ, therefore, from C. Jeffireysii, as figured and described by Jeffreys, in being less swollen medially, and more regularly tapered posteriorly, and especially in not being suddenly contracted and curved near the posterior end, as figured by him. It is possible, however, that these differences may be only unimportant variations, and I therefore refer this shell, for the present, to the European species.

Our specimens are mostly 5^{mm} in length, and about 1^{mm} broat, in the middle.

Cadulus propinquus? G. O. Sars.
Verrill, these Transactions, vol. v, p. 558, pl. 58, figs. 31, 32, 1882.
This species, like the last, is referred to the corresponding Emropean form with much doubt. It differs especially in having the oral aperture decidedly obliquely truncated, while in the European R. propinquus it is described as not at all oblique, and this character is made an important one by Mr. Jeffireys. Our specimens are considerably smaller, more swollen dorsally, and relatively stouter than those we have referred to Teffiveysii.

The shell is short-fusiform, considerably swollen in the middle, and nearly evenly curved on the dorsal side, while the ventral side is usually nearly straight, but sometimes slightly concave, and usnally slightly convex in the middle. The anterior end is gradually tapered from the middle to the aperture, which is rather large, decidedly oblique, nearly round in a front view, thongh often slightly compressed laterally. Behind the middle the shell tapers more rapidly to the posterior aperture, which is abont two-thirds the diameter of the oral. Usually the posterior opening is simple, or nearly so, and transversely truncated, but in some specimens there is a shallow lateral notch on each side. The surface is polished and lustrous.

Length, 3^{mm}; greatest diameter, $\cdot 8^{\mathrm{mm}}$. Some specimens are more slender than the ones measured.

No additional speeimens have been taken since those already recorded from the collections of 1880 and 1881.

Mytilimeria flexuosa Verrill and Smitl, MSS.

Verrill, Amer. Journ. Sei., xxii, p. 306, 1881 ; xxiv, p. 365, 1882; these Transactions, vol. v, p. 567, pl. 58, fig. 38, 1882.
The animal of this shell, in alcohol, has a small and short anal tube, surrounded by small papilts, and a very much larger incurent orifice, ocenpying a ventral position and surrounded by mumerous long and large tentacle-like papillæ; the orifice for the foot is small; the edge of the mantle is bordered by very small papillse. There is a slender, translucent byssus. The hinge-ligament is strengthened by a distinct ossicle, placed lengthwise, more or less ovate in form, with the smaller end next to the hinge-teeth, and somewhat truncated.

Additional specimens were taken at station 1093, in 349 fathoms, 1882 (two living), and at station 2079, in 25 fathoms, 1883 (one large dead shell).

Pecchiolia gemma Verrill.

These Transactions, vol. v, p. 565, 1882.
Plate XCX, figures 7. 8.
Ossicle longitudinal, with the posterior end broadest and notehed in the middle, the narrower anterior end trmeated.

Three additional specimens of this species were taken at station 1093 in 349 fathoms, 1882 ; living specimens were also taken in 1883 at stations 2076 and 2078, in 906 and 499 fathoms; and dead valves at station 2077, in 1255 fathoms; station 2084, in 1290 fathoms; and station 2079 , in 75 fathoms.

Venericardia granulata Say.

Say, Journ. Acad. Nat. Sei., vol. iv, p. 142, pl. 12, fig. 1, 1824.
Cardita gramulata Conrad, Fossils of the Medial Tertiary of the U. S., p. 12, pl. 7, fig. 1, 1838.
Cardita borealis Conrad, Amer. Mar. Coneh., p. 39, pl. S, fig. 1, 1831.
Gould, Invert. Mass:, Binney's edition, p. 146, fig. 455.
A direct comparison of fossil specimens from the Miocene of Virginia with a large series of recent specimens from varions localities along our coast, hoth northern and sonthern, shows that the fossil
form cannot be regarded as specifically distinct from the recent shells. The latter show much greater differences among themselves than those that distinguish the fossil from the ordinary form, known as V.borealis, while all the variations are comected together by intermediate forms.

I also consider V. Novanglice Morse, a mere variation of this common and variable species, hardly to be distinguished as a variety. It differs mainly in its thinner texture, lighter hinge-plate; and more transverse form-characters that are due partly to immaturity and partly to unfavorable conditions of growth.

Living shells, of the typical form of V. borealis, have been dredged by the U. S. Fish Commission, off the castern coast of Virginia, where it is not uncommon, at moderate depths (57 to 150 fathoms).

Loripes lens Verrill.

These Transactions, vol. v, p. 569, 1882.
Jeffireys, in Proc. Zool. Soc. London, for 1882, p. 685, identifies our species with the Loripes lacteus of Europe. I am unable to accept this identification. Although allied forms, they seem to me as distinct as other species of this group.

Leda acuta (Conrad).
Nucula acuta Conrad, Amer. Mar. Conch., pl. 6, fig. 3.
Leda unca Verrill, Proc. U. S. Nat. Mus., iii, p. 401, 1880; these Transactions, v, p. 572, pl. 58, fig. 41, 1882 (? non Gould).

Lede acuta Tryon, Amer. Mar. Conch., p. 182, pl. 38, fig. 496 (poor).
? Leda commutata Philippi.

Plate XXX, figure 15.

Although this species was referred by me to Leda unca Gould, later investigations have rendered this identification doubtful. It is, however, as indicated in my former papers, probably identical with L. acuta Conrad, which was described much earlier. By Jeffreys it has been referred to L. fragilis (Chemn., sp.), which he considers identical with L. commutata Philippi. The identification of Chemnitz's figure is doubtful, and moreover he was not a binomial writer ; it is therefore useless to attempt to restore his name. Not having seen authentic specimens of L. comnutata (L. fragilis Jeffreys) from Europe, I am unable to express any decided opinion as to its identity with our shell. In any case, acuta seems to be the oldest available name for our shell.

In this shell the posterior dorsal area, when seen from the dorsal Trans. Conn. Acad., Tol. VI. 33

July, 188.
side, is regularly elliptical and pretty clearly defined by the ridges running from the beak to the posterior tip; this area is covered by rather prominent, thin, or somewhat lamelliform, divergent ribs, which are regularly and rather closely arranged and somewhat narrower than their interspaces, distally; these ribs usually cover the whole surface, close up to the dorsal edge, which forms a somewhat prominent, sharp and nearly straight earina, but is not compressed and thin, as in some other related species. Within the dorsal area there is no eircumscribed area, such as figured by D'Orbigny in L. .Tamaicensis, with which Mr. Dall identifies our shell. Moreover, the anterior lumule, represented as very distinct in the latter, is obseure and often entirely wanting in our shell. When visible at all, the lunular area is narrow, elongated and defined only by the interruption of the concentric ribs, just before reaching the hinge-margin, leaving a nearly smooth dorsal area between the umbos. Moreover, on the anterior end of the shell there are two rather faint, slightly raised ridges, or waves, a short distance apart, extending from the beak to the anterior ventral margin, and having the area between them slightly concave, corresponding to a flattened or slightly concave space on the margin, where it terminates ; this slight undulation, bordered by two small crests, is, however, usually less distinct than represented in our figure. The posterior end is decidedly acute with a distinct emargination below it, but the ridge, which runs from the beak to the posterior tip, though somewhat prominent, is obtusely rounded and decidedly less developed than in L. Jamaicensis. The concentric ribs are clearly defined, usually very regular, obtusely rounded, or frequently with the edge reflexed anteriorly, and often rising into little angles or points in erossing the posterior ridge; the interspaces are rather deep, nearly smooth, and usually about twice the breadth of the ribs on the sides of the shell. The epidermis is closely adherent and usually dark olive-green.

Well-grown speeimens are frequently $13^{\mathrm{mm}} \mathrm{long} ; 8^{\mathrm{mm}}$ broad; aud 6^{mm} thiek; from the beak to the posterior tip, 8^{mm}.

A speeies elosely related to this, but evidently distinet, whieh is most likely the true I. unea Gould, was dredged by the Albatross off Cape Hatteras in 14 to 48 fathoms, in considerable numbers.

This shell is more solid, more ovate, and more swollen medially, with the beak nearly central, the posterior end very acute, and the posterior dorsal margin slightly concave, while the concave dorsal area is defined by a rombed and not very prominent ridge. The umbos are nearly smooth, polished and lustrous in the adult dead
shells, bnt concentrically lined in the young. The surface is clsewhere covered with pretty regular and not very close, slightly clevated concentric lamellæ, which are sometimes more or less reflexed at the anterior end, while on the posterior dorsal area they are thin, more elevated, nearly straight and divergent. There is no distinctly defined lunular area, nor any definite radiating ridges running from the beak to the anterior margin, thongh a very indistinct undulation may sometimes be detected. The ventral margin is pretty regnlarly curved and shows no indentation below the acnte posterior tip.

Amussium, sp.
Amussium fenestratum Verrill, these Transactions, vol. v, p. 582 (non Forbes).
Mr. W. H. Dall has called my attention to the fact that the American specimens formerly referred by me to the species quoted are specifically distinct from the European types. I have been able to confirm this opinion by direct comparison of our shell with typical specimens sent to me by the Marquis de Monterosato. Our shell has a peculiar transverse striation on the hinge-margin not seen in the European specimens, and not more than two internal ribs, one on each side. The sculpture, also, is finer.

Pecten pustulosus Verrill.

Pecten Ifoskynsi and var. pustulosus Verrill, these Transactions, vol. v, p. 581, pl. 42, figs. 22, $22 a$; pl. 44, fig. 11 (non P. Hoshynsi Forbes).
By Mr. W. II. Dall, who has made a special study of the shells of this gromp, our American species is believed to be distinct from the typical Mediterranean form, with which he has been able to compare them directly. Althongh they are closely similar in form and external sculpture, our specimens differ in the hinge and in the absence of internal radiating ribs, characteristic of the genus Amussirm, and which are present in the trne A. Hoskynsi.

Possibly P. imbrifer Lovén may be identical with P. pustulosus, and not with A. Hoskynsi, to which it has been referred. In that case Lovéu's name would have priority.

Pecten Clintonius Say.

Pecten Clintonius Say, Journ. Acad. Nat. Sci. Phil., iv, p. 124, 1824, pl. 9, fig. 2.
Pecten tenuicostatus Mighels, Proc. Bost. Soc. Nat. Hist., i, p. 49, 1841 (young).
Pecten principoides Emmonds, Report N. C. Geol. Survey, 1858, p. 280, fig. 198.
A comparison of specimens of this Miocene species, from Surrey, Va., with the more strongly ribbed, deep-water form litherto
recorded by me as Pecten temicostatus, var. aratus, shows that they are in all respects essentially identical. In the fossil specimens the ribs are much stronger and more regular than in ordinary specimens of P. tenuicostutus, but not more so than in many deep-water specimens taken in 65 to 125 fathoms, off Martha's Vineyard; while among the numerous specimens dredged by us, all gradations between the strongly ribbed form and those forms, common in shallow water, in which the ribs are much more slender, indistinct, or almost obsolete. The forms of the main shell and of the anricles are the same, however, in all these varieties. The fossils, like all the recent specimens, show the peculiar, fine, oblique strie or vermiculations between the ribs, both on the body of the shell and on the auricles. In the fossil specimens the ribs, especially those towards the ends of the shell and on the anricles, are crossed by the raised lines of growth in such a way as to form small, rather close, distinctly arched, raised scales; this character, which is not usually seen in the smoother, shallow-water form, is found in many of the deep-water specimens quite as prominently, or even more so, than in the fossil.

There being no donbt, therefore, of the identity of the fossil and recent shells, the name, Clintonius, should be adopted for the species, on accomnt of its priority, while the name, tenuicostatus, may well be retained to designate the ordinary smoothish, mostly shal-low-water variety, fom on the New England coast. This name was originally given by Dr. Mighels to very young specimens of this smoothish variety, under the impression that they were a distinct species, but he afterwards recognized the fact that they were only the young of the common species, at that time generally known as Pecten Magellanicus Lam.

The following species should have been inserted on page 206.
Propilidium pertenue? Jeffreys.
Proc. Zool. Soc. Loudon, for 1882, p. 67t, pl. 50, fig. 7.
Four or five specimens of a small limpet occurred at station 1124, in 640 fathoms, in the egg-case of a species of Raia, associated with Choristes eleguns. These agree in most respects with P. pertenue Jeff., but the beak is nearer to the posterior margin, and the shell is thin and opaque white, withont much luster, even when living, but the surface is nearly smooth, though showing slight but distinct lines of growth and sometimes faint traces of microscopic radiating lines, in this respect and the position of the beak resembling more P '. compressum Jelf.

The form is pretty regularly elliptical. The apex is situated near the posterior margin, prominent, acute, and directed strongly backward; it consists of rather more than one small coil, which is regularly incurved and not distinctly turned to one side. The internal septum is narrow and transverse.

Although not agreeing exactly with either of Jeffreys' species, I refer it doubtfully to P. pertenue.

List of Deep-water and Surface Mollusca taken off the East Coast of the United States by the U. S. Fish Commission steamers, Fish Hawk and Albatross, 1880 to 1883.

The following list includes all the species hitherto dredged along the Gulf Stream slope, from off Cape Hatteras to Nova Scotia, except a small number of minute species, not yet fully identified. In general, those species that have not occurred below 60 fathoms are omitted. But the surface species of Heteropoda, Pteropoda, etc., belonging to the Gulf Stream region, are included, whether taken living at the surface or dead from the bottom.

The "Bathymetrical range" refers only to the range as actually observed in this region by the Fish Commission, unless otherwise stated. The geographical distribution is indicated, in a general way, by the abbreviations following the range in depth, but it is not intended to be complete in this respect. Owing to the uncertainty in respect to the alleged identity of the species recorded from other regions with our own, and to the incompleteness of the published lists of species collected by various recent dredging expeditions, the knowledge of the foreign distribution of many of these species is still very imperfect and sure to be largely increased within a few years, so that any facts of this kind that can now be given will have, at best, only a temporary value. The abbreviations are as follows: N . = northern, indicates that the species ranges northward along the American coast, beyond New England waters; S., $=$ southern, southward beyond Cape Hatteras ; Arc., =Arctic ; Eu., = European ; Med., = Mediterranean ; Af., = West African; P., = North Pacific ; As., =North Asia; Cb., =Caribbean Sea and West Indies; Oc., $=$ Oceanic or pelagic.

After the names, references are given to the pages and plates where the species are described or figured in this volume (vi) or the
preceding volume (v) of these Transactions. As it is always important, in giving the bathymetrical distribution of shells, to distinguish between those taken alive and those of which only dead shells are obtained (which may have been earried by fishes and various other agencies far from their true habitats), an asterisk $\left(^{*}\right)$ is added to designate living specimens; while a dagger (\dagger) indicates dead shells. When no sign is added, it is to be understood that the specimens were living.

In the preparation of the following list I have been greatly aided by my assistant, Miss K. J. Bush, who has been engaged for several years in cataloguing and tabnlating the shells collected by the Fish Commission.

CEPHALOPODA.

Lestoteuthis Fabricii (Licht.) V. v, 291, 390, pl. 45, f. 1-2d; pl. 46, f. $1-1 f ;$ pl. 55 , f. 1-1d.

Bathymetrical range, 255 to 906 fathoms. N., Arc., P.
Abralia megalops V. vi, 143, pl. 28 , f. 2.
B. range, $173 \mathrm{f} . \mathrm{Cb}$.

Ommastrephes illecebrosus (Les.) V. v, 268, pls. 28, 29, 37, 38, 39.
B. range, 0 to 1022 f.; beaks 1091 to 1917 f. N.

Sthenoteuthis Bartramii V. v, 288.
Surface.* Southern. Oc.
Mastigoteuthis Agassizii V. v, 297, pl. 48; pl. 49, f. 2, 3-3g; vi, 243.
B. range, 640 to 1050 f .

Chirotenthis lacertosa V. v, 299, 408, pl. 47, f. 1-1b, pl. 56, f. 1-1f; vi, 243.
B. range, 435 to 2221 f . (2949 , arms). N.

Leptoteuthis diaphana V. vi, 141, pl. 32, f. 1.
B. range, 1731 f .

Brachioteuthis Beanii V. v, 406, pl. 55, f. 3-3b; pl. 56, f. 2-2a; vi, 245. B. range, 183 to 843 f.

Callitenthis rcversa V. v, 295, pl. 46, f. 1-1b; vi, 243.
B. range, 365 to 2369 f .

Histioteuthis Collinsii V. v. 234, 300, 404, pl. 22; pl. 27, f. 3-5; pl. 37, f. 5. B. rauge, 372 f . (beaks). Northern.

Desmoteuthis hyperborea (Steenst.) V. v, 302, pl. 27, f. 1-2; pl. 39, f. 1. B. range, 641 f., off Chesapeake Bay. N., Arc.

Desmotenthis tenera V. v, 412, pl. 55, f. 2-2d; pl. 56, f. 3; vi, 245.
B. range, 369 to 1346 f .

Stolotenthis leucoptera V. v, 347, 418, pl. 31, f. 4-5; pl. 54, f. 4. B. range, 182 to 640 f . N. of Cape Cod.

Rossia megaptera V. v, 349, pl. 38, f. 1; pl. 46, f. 6; vi, 245.
B. range, 640 f . Northern.

Rossia Hyutti V. v, 351, pl. 27, f. 8, 9; pl. 30, f. 1; pl. 31, f. 1. 2; pl. 46, f. 5. B. range, 44 to 317 f . N. of Cape Cod. Northern.

Rossia sublevis V. v, 354, 419, pl. 30, f. 2; pl. 31, f. 3; pl. 46, f. 4; pl. 47. f. 2-4.
B. range, 115 to 640 f . N.

Heteroteuth is tenera V. v, 357, 419, pl. 46, f. 2-2d, 3-3b; pl. 47, f. 5-5b.
B. range, 18 to 301 f ., eggs 317 f.

Argonauta argo Linné. v, 364, 420; vi, 247, pl. 28, f. 1-1b.
B. range, shells, 64 to 1917 f .; living at surface. Oc.. Cb., S., Med.

Alloposus mollis V. v, 366, 420, pl. 50, f. 1-2a; pl. 51, f. 4; vi, 247.
B. range, 238 to 1346 f.: frag. 1735 f .

Octopus Bairdii V. v, 368, 421, pl. 33, f. 1, 1a; pl. 34, f. 5,$6 ; \mathrm{pl} .36$, f. 10; pl. 38, f. 8; pl. 49, f. 4, 4a; pl. 51, f. 1, $1 a$.
B. range, 85 to 843 f. ; 28 to 300 f . N. of Cape Cod. N., Eur.

Octopus piscatorum V. v, 377, pl. 36, f. 1, 2; vi, 248.
B. range, 1362 f . Northern.

Octopus lentus V. v, 375, pl. 35, f. 1, 2; pl. 51, f. 2.
B. range, 120 to 603 f. (Blake Exp.) Northern.

Octopus Carolinensis V. vi, 235.
B. range, 142 f., off Cape Hatteras.

Octopus gracilis V. vi, 236.
B. range, 1290 f .

Eledone verrucosa V. v, 380, pls. 52, 53; vi, 248.
B. range, 787 to 1255 f .

Eledonella pygmea V. vi, 145, pl. 32, f. 2.
B. range, 2949 f ., off Chesapeake Bay.

Stauroteuthis syrtensis V. v, 382, pl. 32, f. 1-5; vi, 249.
B. range, 499 f., off Nova Scotia. N.

GASTROPODA.

Toxoglossa.
Admete Couthouyi Jay ($=$ A. viridula Gld.)
B. range, 155 to 1255 f. N., Arc., Eu.

Pleurotoma Dalli V. and S. v. 451, pl. 57, f. 1-1a.
B. range, 94 to 142 f.*; 146 f. \dagger

Pleurotoma Carpenteri V. and S. v, 452, pl. 57, f. 2.
B. range, $86 \mathrm{f} . \dagger ; 100$ to 155 f.*

Pleurotoma comatotropis Dall. v, 452.
B. range, $100 \mathrm{f} . \dagger$ Cb.

Daphnella limacina (Dall.) v, 452.
B. range, $368 \mathrm{f} . \mathrm{Cb}$.

Pleurotomclla Packardii V. v, 453, pl. 43, f. 9; pl. 57, f. 5.
B. range, $193 \mathrm{f} . \dagger ; 85$ to 110 f . N. of Cape Cod.

Pleurotomella Agassizii V. and S. v, 454, pl. 57, f. 3, 3a .
B. range, 39 to $1309 \mathrm{f} .{ }^{*}$; $1608 \mathrm{f} . \dagger$

Pleurotomella Bairdii V. and S. vi, 147, pl. 31, f. 1.
B. range, 1608 to 1731 f.*; 2221 f. \dagger

Pleurotomella Pandionis V. v, 456, pl. 57, f. 4, 4a.
B. range, 238 to $310 \mathrm{f} . \dagger ; 319 \mathrm{f} . *$

Pleurotomella Benedicti V. and S. vi, 148, pl. 31, f. 2, 2a.
B. range, 1290 f .

Pleurotomella Sandersoni V. vi, 149, pl. 31, f. 3, 3u. B. range, 1290 to 2033 f .

Pleurotomella Saffordi V. and S. vi, 151, pl. 31, f. 4, $4 a$. B. range, 843 to 1608 f :

Pleurotomella bandella Dall $=P$. Diomedeae V. vi, 152, 250, pl. 31, f. 5-5a. B. range, 1290 to 2033 f . Cb .

Pleurotomella Emiertoni V. and S. vi, 154, pl. 31. f. 6.
B. range, 1917 f. \dagger Off Chesapeake Bay. Cb.

Pleurotomella Bruneri V. and S. vi, 155, pl. 31, f. 7, \%a. B. range, $1608 \mathrm{f} . *$; $2033 \mathrm{f}$. †

Pleurotomella Catharince V. and S. vi, 155, pl. 31, f. 9, 9 a.
B. range, 843 to 2033 f .

Gymnobela engonia V. vi, 15%.
B. range, 906 to $1451 \mathrm{f} . \dagger ; 1608$ f.*

Gymnobela curta V. vi, 158, pl. 31, f. 10.
B. range, 813 to $1290 \mathrm{f} . * ; 1467$ to $1917 \mathrm{f} .+$

Gymnobela curta, var. subangulata V. vi, 159.
B. range, 197 to $2033 \mathrm{f}, \dagger ; 1290$ to 1451 f .*

Bela (?) temuilirata Dall. v, 463.
B. range, 365 f. $\dagger \mathrm{P}$.

Bela hebes V. v, 459, pl. 57, f. 7.
B. range, 252 to $906 \mathrm{f} . *$; 1290 to $2033 \mathrm{f} . \dagger$

Bela pygmaea V. v, 460, pl. 57, f. 8.
B. range, 312 to 1290 f . N.

Bela incisula V. v, 461, pl. 43, f. 12; pl. 57, f. 14.
B. range, 18 to $480 \mathrm{f} .+\mathrm{N}$.

Bela Gouldii V. v, 465, pl. 57, f. 6, 6a.
B. range, $300 \mathrm{f} .+\left(6 \frac{1}{2}\right.$ to 122 f ., N. of Cape Cod). N.

Bela mitrula, var. concinnula V. v, 468, pl. 43, f. 15; pl. 57, f. 11; vi, 249.
B. range, 100 f. \dagger; $252 \frac{1}{3}$ to 487 f.* N., En.

Bela harpularia (Couth.) H. and A. Ad. v, 473 , pl. 43, f. 14; pl. 57, f. 9.
B. range, 10 to $28 \frac{1}{2} \mathrm{f}$. $* 368 \mathrm{f} . \dagger \mathrm{N}$.

Bela cancellata (Mighels) Stimpson. v, 475, pl. 43, f. 10, 11; pl. 5\%, f. 13. B. range, 126 to $547 \mathrm{f} . \dagger$ N., Arc., Eu.

Bela pleurotomaria (Couthouy) Adams. v, 478.
B. range, 16 to $208 \mathrm{f} . \dagger$ N., Arc., Eu.

Bela Rathbuni V. vi, 236.
B. range, 1895 f. \dagger Off Cape Hatteras.

Bela subvitrea V. vi, 160.
B. range, 843 f. Off Cape Hatteras.

Bela subturgida V. vi, 161.
B. range, 843 f. Off Cape Hatteras.

Spirotropis ephamilla V. vi, 162.
B. range, $1917 \mathrm{f} . \dagger$; 2221 f .* Off Chesapeake Bay.

Typhlomangilia Tawneri V. and S. vi, 163, pl. 31, f. 8.
B. range, 1290 f .

Taranis Mörchii (Mahm) Jeffreys. v, 486, pl. 57, f. 18.
B. range, 365 f.t; 368 to 858 f.* N., Arc., Eu. Cb.

Taranis Mörchii, var. tornatus V. vi, 251.
B. range, 1255 f. Off Nova Scotia.

Taranis pulchella V. v, 487, pl. 5i, f. 17; vi, pl. 29, f. 8.
B. range, 349 to 48 f.

Rachiglossa.
Marginella borealis V. vi, 165, pl. 29, f. 4.
B. range, 64 to $100 \mathrm{f} . \dagger ; 66 \frac{1}{2}$ to 81 f .*

Volutella lachrimula (illd. vi, 166.
B. range, $142 \mathrm{f.*} .516 \mathrm{f} . \dagger$ Off Cape ITatteras. S.

Buccium Sandersoni V. v, 490, pl. 58, f. 9.
B. range, $156 \mathrm{f} . \dagger: 208$ to 264 f .*

Buccinum undatum Linné. v, pl. 58, f. 10.
B. range, 6 to 123 f.*; $142 \frac{1}{2}$ to 843 f. \dagger N.. Arc.. Eu.

Buccinum cyaneum Brug. v, 492, pl. 43, f. 5; pl. 58, f. 11.
B. range, 101 to 150 f., off Cape Cod. N.. Arc.. Eu.

Buccinum abyssorum V. and S. vi, 167, pl. 31, f. 11-11b.
B. range, $49 \mathrm{f} . \dagger$; 906 to $1309 \mathrm{f.*}$

Sipho Stimpsonii Mörch. v, 499, pl. 57, f. 24.
B. range, 16 to 300 f . N.

Sipho Stimpsonii, var. liratulus V. v, 500 .
B. range, $18 \mathrm{f} . \dagger$; 55 to $319 \mathrm{f.*} \mathrm{~N}$.

Sipho pubescens V. v, 501, pl. 43, f. 6; pl. 57, f. 25.
B. range. 18 to 179 f.t; 192 to 640 f .* N.

Sipho pygmceus (Gld.) V. v, 501, pl. 57, f. 21.
B. range, 12 to 640 f . N.

Sipho pygmceus, var. plemulus V. v, 505 (note).
B. range, 20 to 350 f . N.

Sipho parvus V. and S. v, 504, pl. 57, f. 20-20b.
B. range, 193 to 906 f .

Sipho obesus V. vi, 168.
B. range, 843 f. Off Cape Hatteras.

Sipho profundicola V. and S. vi, 170 , pl. 31, f. 13.
B. range, 1497 to 1917 f. \dagger; 2033 f.*

Sipho profundicola, var. dispar V. vi, 171.
B. range, 1555 f .

Sipho glyptus V. v, 505, pl. 57, f. 22; pl. 58, f. 1, 1a. B. range, 193 to $54 \% \mathrm{f}$.

Sipho calatus V. \quad, 506, pl. 57, f. 19, 19a.
B. range, 75 to $616 \mathrm{f}+;$.302 to 516 f .*

Sipho ccelutus, var. hebes V. vi, 172.
B. range, 640 to 1255 f .

Sipho (Mohnia) ccelatulus V. vi, 172.
B. range, 516 to $547 \mathrm{f} . \dagger ; 906$ to 1290 f.*

Sipho (Mohnia) simplex V. vi. 174.
B. range, $99 \frac{1}{2}$ f. \dagger; 843 f.*

Sipho (?) leptaleus V. vi, 175, pl. 31, f. 16.
B. range, $452 \mathrm{f} . \dagger$

Sipho (?) hispidulus V. vi, 239.
B. range, 2033 f.* Off Delaware Bay.

Neptunea despecta (Linné) Ad., var. tornata (Gld.)
B. range, 69 to $100 \mathrm{f} . \dagger$ off George's Bank. N., Arc., Eu.

Neptunea decemcostata (Say) H. and A. Ad.
B. range, 6 to $322 \mathrm{f} . \dagger ; 41$ to 86 f .* N.

Nassa nigrolabra V. v, 512, pl. 58, f. 12.
B. range, $155 \mathrm{f} . *$; $349 \mathrm{f} . \dagger$

Trophon Lintoni V. and S. vi, 176, pl. 29, f. 1.
B. range. 70 f. \dagger

Trophon clavatus Sars. vi, 176.
B. range, 843 to 2033 f . Eu.

Urosalpinx Carolinensis V. vi, 237.
B. range, 142 to 516 f. $\dagger ; 938$ f.* Off Cape Hatteras.

Urosalpinx macra V. vi, 239.
B. range, 142 f. \dagger

Anachis Haliceeti (Jeff.). v, 513, pl. 43, f. 7; vi, 252.
B. range, 79 f. $\dagger ; 115$ to 640 f.* N., Arc., Eu.

Astyris diaphana V. v, 513. pl. 58, f. 2.
B. range, 64 f.†; 100 to 487 f.*

Astyris zonalis (Lins.) V. v, 515.
B. range, 9 to 202 f . N .

Astyris pura V. v, 515.
B. range. $71 \mathrm{f} . \dagger ; 100$ to 1255 f .*

Tafioglossa.

Dolium Bairdii V. and S. v, 515; vi, 253, pl. 29, f. 2-2b.
B. range, 89 to 234 f. \dagger; 98 to 202 f.*

Benthodolium abyssorum V. and S. vi, 177, pl. 31, f. 12-12b.
B. range, 1395 f. \dagger; 2221 f.* Off Chesapeake Bay.

Natica clatusa Brod. and Sowerby.
B. range, 13 to 1255 f. \dagger; 238 to 843 f.* N., Arc., Eu.

Lunatí mana (Möll.) Sars. v, 516, pl. 42, f. 9.
B. range, 27 to 28 f.*; 430 f. \dagger N., Arc., Eu.

Lunatia heros (Say) H. and A. Adams.
B. range, 0 to 238 f . N., S.

Lunutia Grönlandica (Möll.) Ad.
B. range, $12 \frac{1}{2}$ to 65 f.t; 75 to 1290 £.* N., Arc., Eu.

Lamellaria pellucida V. v, 518, pl. 58, f. 4, 5, 5α.
B. range, 86 to 787 f .

Lamellaria pellucida, var, Gouldii V. v, 518, pl. 58, f. 3.
B. range, 44 to 1497 f .

Piliscus commodus (Midd.). vi, 191.
B. range, 150 f., off Nova Scotia. Arc., Eu.

Capulus Hungaricus (Linné). v, 519; vi, pl. 29, f. 6.
B. range. 71^{*} to 458 f. En.

Crucibulum striatum (Say) H. and A. Adams. B. range, 3 to $65 \mathrm{f} . * ; 100 \mathrm{f} . \dagger \mathrm{N}$.

Crepidula plana Say.
B. range. 0 to 55 f.*; 155 to $487 \mathrm{f} . \dagger$ N., S.

Velutina levigata (L.) Gld.
B. range, $15 \frac{1}{2}$ to 86 f.*: 100 to 130 f. \dagger N.. Arc., Eu.

Torellia fimbriata V. and S. v, 520 , pl. 57 , f. $27,27 a$.
B. range, $142 \frac{1}{2}$ to 321 f .

Torellia fimbriata, var. tiarella V. v, 521.
B. range, 182 f .

Torellia vestita Jeff. v, 521, pl. 42, f. 5.
B. range, $4 \frac{1}{2}$ to 86 f. $\dagger: 146$ to 317 f.* N., Eu.

Trichotropis (?) inflate Friele. vi, 178.
B. range, 1290 f . Arc.

Litiopa bombyx Rang. v, 523.
Surface.* S., O.
Cingula Jan-Mayeni (Friele) V. v, 524, pl. 42, f. 8.
B. range, 238 to 1290 f. N., Arc.

Cingula brychia V. vi, 179, pl. 32, f. 9.
B. range, 349 to 1290 f .

Cingula carinata Migh.
B. range, 4 to 25 f.*; 18 to 355 f. \dagger N., Arc.

Cingula syngenes V. vi, 180. pl. 32, f. 11.
B. range, 142 f. \dagger Off Cape Hatteras.

Cingula leptaleu V. vi, 182, pl. 32, f. 10.
B. range, 858 f. Off Nova Scotia.

Cingula apicina V. vi, 183, pl. 32, f. 8.
B. range, 1608 f .

Cingula Sundersoni V. vi, 241.
B. range, 142 f. \dagger Off Cape Hatteras.

Cingula aculeus Gld.
B. range, 0 to 349 f. N., Arc., Eu.

Cingula turgida? (Jeff.) V. v, 524.
B. range, $487 \mathrm{f} .+$ Eu.

Cingula harpa V. v. 523, pl. 58, f. 6.
B. range, 319 to $487 \mathrm{f} . \dagger$

Cingula areolata (Stimp.) V. v, 524, pl. 43, f. 2.
B. range, 134 to 349 f. N.

Cithna tenella, var. costulata Jeff. vi, 184.
B. range, 2033 f . Off Delaware Bay. Eu., Med., Azores.

Cithna cingulata V. vi, 184, pl. 32, f. 7.
B. range, 906 to $1290 \mathrm{f} . \dagger ; 1467 \mathrm{f}$.*

Cithna (?) olivacea V. vi, 185, pl. 29, f. 5.
B. range, 193 to $1290 \mathrm{f} .+$

Fossarus elegans V. and S. v, 522, pl. 57, f. 28.
B. range, 100 to 142 f. \dagger

Seguenzia formosa Jeff. vi, 186, pl. 31. f. 14-14b.
B. range, 1290 to 2033 f . Eu.

Seguenzia formosa, var. uitida V. vi, 188.
B. range, 2033 f. Off Delaware Bay.

Seguenziu eritima V. vi, 189, pl. 31, f. 15.
B. range, 1290 to 2033 f .

Cerithiella Whiteavesii V. v, 5શ2, pl. 42, f. 7.
B. range, 238 to 843 f. N.

Apormais occidentalis Beck.
B. range, $34 \frac{1}{2}$ to $1000 \mathrm{f} .+; 115$ to 349 f .* N.

Ptenoglossa.

Scalaria Dalliana V. and S. v, 52\%, pl. 57, f. 33.
B. range, $85 \mathrm{f} . \dagger ; 115$ to 193 f .*

Scalaria Pourtalesii V. and S. v, 527, pl. 57, f. 32.
B. range, 85 to 146 f .

Scalaria Leeana V. v, 526, pl. 5\%, f. 34.
B. range, $146 \mathrm{f} . \dagger$

Scalaria Audreusii V. v, 526, pl. 57. f. 35.
B. range, $100 \mathrm{f} .+; 547 \mathrm{f}$.*

Acirsa gracilis V. v, 528, pl. 57, f. 31.
B. range, 349 to $843 \mathrm{f} . \dagger ; 487$ to 547 f .*

Aclis striata V. v, 528, pl. 58, f. 13.
B. range, 100 f .

Aclis Walleri J. v, 528. pl. 5\%, f. 36.
B. range, $349 \mathrm{f} . \dagger$: 365 to 938 f .* Eu.

Aclis tenuis V. v, 528, pl. 58, f. 19.
B. range, 100 f .

Solarium boreale V. and S. v, 529, pl. 57, f. 29, 30.
B. range, 115 f . $; 146$ to $193 \mathrm{f} . \dagger$

Ianthima frayilis Desh.
Surface. \dagger S., O.
Rhiphiddoglossa.
Rotella cryptospira V. vi, 241.
B. range, $142 \mathrm{f} . \dagger$ Off Cape Hatteras.

Ethalia multistriata V. vi, 242.
B. range, 142 f. \dagger Off Cape Hatteras.

Leptothyra induta Watson. vi, 19%.
B. range, $142 \mathrm{f} . \dagger$ Off Cape Hatteras.

Calliostoma occidentale (Migh.).
B. range, $207 \mathrm{f} . \dagger ; 365$ to 640 f.* N., Arc., Eu.

Calliostoma Bairdii V. and S. v, 530, 11. 5\%, f. 26.
B. range, 56 to $640 \mathrm{f} . t ; 64$ to 192 f . $* \mathrm{Cb}$.

Margusitu regalis V. and S. v, 530, pl. 57, f. 37; vi, 254, pl. 29, f. 14.
B. range, 64 to $1 \% 3 \mathrm{f} . \nmid ; 193$ to 1555 f .*

Margarita lamellosa V. and s. v. 530, pl. 5\%, f. 38.
B. range, 100 to $192 \mathrm{f}$. .

Macheroplax obscura (Couth.) Friele.
B. range, $12 \frac{1}{2}$ to 487 f . N., Arc., Eu.

Macheroplax obscura, var. carinata V. v, 532.
B. range, 100 to $208 \mathrm{f} .+: 266$ to 335 f .* N.

Cyclostrema Dalli V. v, 532, pl. 57, f. 39; vi, pl. 29, f. 15.
B. range, 487 to 858 f .

Cyclostremu Dalli, var. ornatum V. vi, 255, pl. 32, f. 17.
B. range, 843 f .

Cyclostrema cingulatum V. vi, 198, pl. 32, f. 14.
B. range, $547 \mathrm{f} . \dagger$

Cyclostrema affine V. vi, 199, pl. 32, f. 15.
B. range, 365 to 858 f. $\dagger ; 843$ f.*

Cyclostrema diaphanum V. vi, 199, pl. 32, f. 16.
B. range, 1290 f.*; $2033 \mathrm{f} . \dagger$

Tharsis, sp. vi, 201.
B. range, $843 \mathrm{f} . \dagger$ Off Cape Hatteras.

Ganeza, sp. vi, 201.
B. range, ? \uparrow (Blake Exp.)

Scissurella crispata Flem. v, 533.
B. range, 238 or 365 f. \dagger N., Eu., Med.

Fissurella Tanneri V. vi, 255, pl. 29, f. 13, $13 a$.
B. range, 104 f.*; 142 f. \dagger Southern.

Puncturella noachina (L.) Lowe.
B. range, 16 f. \dagger; 34 to 640 f.* N., Arc., Eu.

Puncturella (Fissurisepta) eritmeta V. vi, 204, pl. 32, f. 19, $19 a$.
B. range, 1451 f .

Propilidium elegans V. vi, 205.
B. range, 1395 f. Off Chesapeake Bay.

Propilidium pertenue Jeff. (\%), vi, p. 262.
B. range, 640 f. Eu.

Addisonia paradoxa Dall. v, 533; vi, 256, pl. 29, f. 10, 11-11b.
B. range, $66 \frac{1}{\frac{1}{2}}$ to $202 \mathrm{f} . \dagger$; 71 to 156 f.* (? Eu., Med.). \ddagger

Cocculina Rathbuni Dall. v, 534.
B. range, 100 to 616 f .

Cocculina Dalli V. vi, 203.
B. range, $317 \mathrm{f} . \dagger$

Cocculina Beanii Dall. v, 533; vi, pl. 29, f. 12.
B. range, $365 \mathrm{f} . \dagger \mathrm{Cb}$.

Cocculina leptalea V. vi, 202, pl. 32, f. $20-20 b$.
B. range, 1395 to 2033 f . Southern.

Cocculina spinigera Jeff. vi, 203.
B. range, 335 to 843 f. Eu.

Cocculina conica V. vi, 204.
B. range, 499 f . Off Nova Scotia.

Lepetella tubicola V. and S. v, 534, pl. 58, f. 29-29a.
B. range, 142 to $547 \mathrm{f} . \dagger$; 134 to 396 f.* Eu.

[^6]
Polyplacophora.

Hanleyia mendicaria (Migh.) Carp. v, 534.
B. range, 49 to 317 f. N., Arc., Eu., Med.

Trachydermon albus (Linné.) Carp.
B. range, $99 \frac{1}{2}$ f., off Nova Scotia. Arc., Eu.

Trachydermon exaratus (Sars). vi, 208, pl. 30, f. 2-2b.
B. range, 101 to 194 f . Eu.

Leptochiton alveolus (Sars) Lovén. v, 534.
B. range, $99 \frac{1}{2}$ to 640 f. N., Eu.

Placophora (Euplacophora) Atlantica V. and S. vi, 206, pl. 30, f. 1, 16. B. range, 122 to 640 f .

Gymnoglossa.

Stilifer Stimpsoni V. v, 535, f. 2.
B. range, 6 to 1255 f. N.

Stilifer curtus V. v, 535.
B. range, 410 to 1255 f .

Eutima intermedia Cantr. v, 535, pl. 58, f. 20.
B. range, 85 to 155 f . Eu.

Eulima distorta Desh. v, 536.
B. range, 115 f. Eu.

Eulima stenostoma Jeff. v, 536; vi, 254.
B. range, 843 to 1451 f.*; 1467 f. \dagger N., Eu.

Turbonilla Emertoni V. v, 536, pl. 58, f. 14, $14 a$.
B. range, 238 f .

Turbonilla nivea (St.) Ad.
B. range, 100 to $157 \mathrm{f} . \dagger \mathrm{N}$.

Turbonilla Rathbuni V. and S. v, 536, pl. 58, f. 15.
B. range, 64 to $1395 \mathrm{f} . \dagger ; 100$ to 365 f .*

Turbonilla Bushiana V. v, 537, pl. 58, f. 16.
B. range, 365 to $1290 \mathrm{f} . *$; 1451 to 1467 f. \dagger

Eulimella Smithii V. v, 538, pl. 58, f. 18.
B. range, 85 to 120 f .*; $146 \mathrm{f}. \dagger$

Eulimella lucida V. vi, 192, pl. 32, f. 3, $3 a$.
B. range, 2033 f .

Eulimella charicssa V. vi, 193, pl. 32, f. 4-4b.
B. range, 2033 f .

Enlimella nitida V. vi, 194, pl. 32, f. 5.
B. range, $2033 \mathrm{f} . \dagger$

Eulimella (or Menestho) lissa V. vi, 195, pl. 32, f. 6.
B. range, 142 f. Off Cape Hatteras.

Menestho sulcuta V. v, 539, pl. 58, f. 17.
B. range, 115 to $365 \mathrm{f} . \dagger$

Menestho Bruneri V. v, 539.
B. range, 487 f .

Odostomia unidentata (Mont.)
B. range, 100 to 115 f. \dagger Eu.
A. E. Verrill-Mollusca of the New England Coast.

Odostomia tornata V. vi, 196.
B. range, 142 f. \dagger Off Cape Hatteras.

Odostomia disparilis V. vi, 196.
B. range, 142 f. \dagger Off Cape Hatteras.

Odostomia, sp. v. 539.
B. range, 365 f. \dagger

Tectibranchiata.
Actroon nitidus V. v, 540, pl. 58, f. 21.
B. range, 238 to 843 f.*; 1451 f. \dagger

Actcon melampoides Dall. vi, 210.
B. range, 843 f. \dagger Off Cape Hatteras. Cb.

Ringicula nitida V. v, 540.
B. range, 100 to $547 \mathrm{f} .+; 120$ to 487 f .* Cb.

Choristes elegans, var. tenera V. v, 541, pl. 58, f. 27. 27a; vi, 256, pl. 29, f. $9-9 b$ (young).
B. range, $193 \mathrm{f} . \dagger$; 255 to 640 f .* Fossil in Canada.

Scaphander nobilis V. vi, 209, pl. 32, f. 18-18d.
B. range, $906 \mathrm{f} .+; 1091$ to 1309 f.*

Scaphander puncto-striatus (Migh.) Ad.
B. range, 46 to 1255 f.*; 1362 to 1467 f. \dagger N., Arc., Eu.

Pliline quadrata (Wood) Forb. and Han.
B. range, 20 to 266 f. \dagger; 312 to 480 f.* N., Arc., Eu.

Philine Finmarchica Sars. v, 544.
B. range, 86 f. N., Eu.

Philine cingulata Sars. v, 544.
B. range, 155 to 487 f. Eu.

Philine, sp.
B. range, 100 f .

Philine amabilis V. and S. v, 544, pl. 58, f. 23, 24.
B. range, 120 to 156 f .

Philine tincta V. v, 544.
B. range, 67 f .

Amphisphyra globosa Lovén. v, 543.
B. range, 115 to 155 f.t; 319 to 843 f.* N., Eu.

Amphisphyra pellucida (Brown) Lovén.
B. range, 120 f. \dagger : 20 to 365 f.* N., Arc., En.

Diaphana gemma V. v, 543, pl. 58, f. 22.
B. range, 100 to 2033 f .

Diaphana comulus (Desh.) V. v, 543, pl. 58, f. 25.
B. range, 100 f. \dagger; 155 f.* Eu., Med.

Diaphana nitidula (Lov.) v, 543.
B. range, 155 to 906 f . Eu.

Diaphana pertenuis (Mighels).
B. range, 20 f. \dagger; 319 to 386 f.* N., Arc., En.

Cylichna alba (Brown) Lovén.
B. range, 12 to 1091 f.*; 1290 f. \dagger N., Arc., Eu.

Cylichua (?) Dulli V. v, 542; vi. pl. 29, f. 15.
B. range, 452 to $906 \mathrm{f} . \dagger ; 938$ to 1290 f .*

Cyliclua occulta (Migh.) Ad.
B. range, 100 to 1467 f.*: 1608 f. \dagger N., Arc., Eu.

Pleurobranchect tarda V. v. 546. pl. 58, f. 26.
B. range, 28 to 640 f .

Koonsia obesa V. v, 545; vi, pl. 28, f. 7.
B. range, 192 to 312 f .

Nudibranchiata.

Heterodoris robusta V. and Em. v, 549, pl. 58, f. 35, 35. f. $5,5 a$.
B. range, 458 f .

Issa ramosa V. and Em. v, 547, pl. 58, f. 36, $36 a$.
B. range, 100 to 321 f .

Doris complanata V. v, 549, pl. 58. f. 34-34b; vi, pl. 28, f. 6.
B. range, 86 to 194 f .

Scyllowa Educardsii V. v, 55̃0, pl. 43, f. 10.
Surface. Wood's Hole ; off Cape Hatteras. Oc.
Dendronotus robustus V. v, 550 .
B. range, 28 to 317 f. N., Eu.

Dendronotus arborescens Ald. and Han.
B. range, 13 to 351 f. N., Arc., Eu.

Dendronotus, sp.
B. range, 146 f .

Doto coronata (Gm.) Ald. and Han.
B. range, 0 to 10 f. Surface. N., Eu.

Fiona nobilis Ald. and Han. v, 551.
Surface. Oc., Eu.
Eolis papillosa (Linné) Forb, and Han.
B. range, 0 to 208 f. N., Arc., Eu.

Coryphella, sp.
B. range, 30 to 168 f .

Tergipes despectus (Johnst.) Ald. and Han.
B. range, 0 to 10 f. Surface. N., Eu.

Facelina pilata (Gld.) V.
B. range, l. w. to 146 f . Surface.

Heteropoda.

Carinaria Atlantica Ad. and R. v, 529.
B. range, $65 \mathrm{f} . \dagger$ Oc.

Atlanta Peronii Les. v, 529; vi, pl. 28, f. 4, 4a.
B. range, $15 \frac{1}{2}$ to $1608 \mathrm{f} .+$ Oc.

Atlanta Gaudichaudii Eyd. and Soul. vi, 211.
Surface.* Oc.
Atlanta rosea Soul. vi, 211.
B. range, 843 to 2369 f. \dagger : surface.* Oc.

Atlanta Lamanonii Eyd. and Suul. vi, 211.
B. range, $1731 \mathrm{f} . \dagger$ Oc.

Atlanta michella V. sp. nov. vi. 211.
Surface.* Oc.
Atlanta inclinata Soul. vi, 211.
B. range, 516 to 843 f.t; surface.* Oc.

Firola Kerandrenii E. and S. vi. 212.
Surface.* Oc.

Pteropoda.
Cymbulia calceolus V. v, 553, pl. 58, f. 33.
B. range, 18 to $1467 \mathrm{f} .+$; surface.* Oc.

Cavolina tridentata Gray. v, 554, f. 6, 7.
B. range. 45 to 2033 f. \uparrow : surface.* Oc.

Cavolina uncinata (D’Orb.) Gray. v, 554.
B. range, 64 to $1608 \mathrm{f} . \nmid$; surface.* Oc.

Cavolina longirostris Les. v, 555.
B. range, 64 to $2033 \mathrm{f} . \dagger$; surface.* Oc.

Cavolina gibbosa (Rang). vi, 213.
B. range, 193 to 1451 f. \dagger Oc.

Cavolina quadridentata (Leseur). vi, 212.
B. range, 142 to $146 y$ f. \dagger Oc.

Cavolina angulata (Soul.) vi, 213.
Surface.* Oc.
Cavolina inflexa (Les.) Gray. v, 555.
B. range, 487 to 1467 f. \dagger Oc.

Plewropus Hargeri V. v, 555; vi. pl. 28, f. 3.
Surface.* Oc.
Diacria trispinosa Gray.
B. range, 64 to $1451 \mathrm{f} . \dagger$; surface.* Oc.

Clio pyramidata Linné. v, 555.
B. range, 64 to $2038 \mathrm{f} . \dagger$ Oc.

Bulantium recurvum Children. v. 556.
B. range, 64 to $1917 \mathrm{f} . \dagger$ Oc.

Triptera columnella (Rang). v, 557; vi, 214.
B. range, 142 to 1608 f. \dagger Oc., S.

Styliola virgula (Rang). vi, 213.
Surface.* Oc., S.
Styliola virgula, var. corniformis (D'Orb.). vi, 214.
Surface.* Oc., S.
Styliola subulata (Quoy and Gaimard). vi, 213.
B. range, $15 \frac{1}{2}$ to $1467 \mathrm{f} . \dagger$; surface.* Oc., S.

Styliola recta Blainv. v, 556.
Surface.* Oc., S.
Spirialis retroversus (Flem.), var. MacAndrei Forbes. v, 55%.
Surface. Oc., Eu., Med.

Spirialis Gouldii St. (? S. balea Möll., var.).
Surface. Oc., N., Eu.
Spirialis bulimoides Soul. vi, 210.
Surface.* Oc., S.
Spirialis trochiformis Soul. vi. 214.
Surface.* Oc., S.
Clione papilionacea Pallas.
Surface.* Oc., N., Arc., Etr.
Clione longicaudata Soul. vi, 215.
Surface.* Oc.
Trichocyclus Dumereillii (Oken.) Esch. vi, 215.
Surface* Oc.

SOLENOCONCHA.

Dentalium solidum V. vi, 215.
B. range, 843 to 1309 f .

Dentalium striolatum Stimp.
B. range, 25 to 115 f.t; 146 to 1255 f.* N., Eu.

Dentalium oceidentale Stimp. v, pl. 42, f. 16-18.
B. range, 26 to $115 \mathrm{f} .+; 146$ to 1255 f.* N., Eu.

Dentalium occidentale, var. sulcatum V. vi, 217.
B. range, 75 to 1255 f .*

Dentalium, sp. . g. vi, 217.
B. range, 1731 to 2033 f . Southern.

Dentalium, sp., h. vi, 21\%.
B. range, $843 \mathrm{f} . \nmid$; 2033 f .* Southern.

Siphodentalium vitrenm M. Sars. \quad, 55\%, pl. 42, f. 19.
B. range, 100 f.t; 349 to 1290 f.* N.. Arc., Eu.

Siphodentalium teres Jeff. vi, 218.
B. range, $843 \mathrm{f} . \dagger$; 858 to 1290 f.* En.

Siphonentalis affinis (Sars). v, 558, pl. 42. f. 20, a, b.
B. range, 349 to 365 f.t; 499 to 1731 f.* N., Eu., Azores.

Siphonentalis Lofotensis Sars. r, 558.
B. range, 115 f. ${ }^{*}$; 365 to 480 f. \dagger N., Eu.

Cadulus Pundionis V. and S. v, 558, pl. 58, f. 30, $30 a$.
B. range, 85 to $48{ }^{7} \mathrm{f} . *$; $516 \mathrm{f} .+$ (? Eu., Med., Af.)

Cadulus W'atsoni Dall. vi, 219.
B. range, 197 to $938 \mathrm{f} .+; 547$ to 843 f .* Cb .

Cadulus grandis V. vi, 219.
B. range, 843 to $146 \% \mathrm{f} . \dagger ; 906$ to 1098 f .*

Cadulus Jeffreysii ? (Monteros.) v, 559 ; vi, 25%.
B. range, 115 f.*; 516 to 843 f. \dagger Eu., Azores.

Cadulus propinquus ? G. O. Sars. v, 558, pl. 58, f. 31, 32 ; vi, 25\%.
B. range, 100 to 115 f. \dagger Eu., Med.

Cadulus cylindratus Jeff. vi, 220.
B. range, 1608 f. Eu.

LAMELLIBRANCHIATA.

Teredo megotard Hanley.
B. range, $55 \mathrm{f} . \dagger$; 100 to $1467 \mathrm{f} . *$; surface* in wood. S., O., Eu.

Xylophaga dorsalis (Turt.) F. and Han. v, 559, pl. 44, f. 9.
B. range, 32 to 2033 f. N.. Eu., Med.

Ensatella Americana (Gld.) V.
B. range, 0 to $28 \frac{1}{2}$ f. ${ }^{*:} 64$ to 89 f. \dagger N., S.

Mya trumeata Linné.
B. range, 15 to 110 f. \dagger N., Arc., Eu., P.

Saxicava Norvegiea (Speng.) Woodw.
B. range, 20 to $506 \mathrm{f}+.; 300 \mathrm{f}$.* N., Arc., Eu., P.

Cyrtodaria siliqua (Speng.) Woodw.
B. range, 28 to $258 \mathrm{f} .+\mathrm{N}$. , Arc.

Poromya granulata (Nyst.) F. and Han. v, 564, pl. 44, f. 3, 4.
B. range, 64 to $146 \mathrm{f} . t ; 93$ to 120 f.* N., Eu., Med., Cb.

Poromya gramuluta, var. rotundata (J.) v, 565.
B. range, 64 to 115 f. N., Eu.

Poromya sublevis V. vi, 221, pl. 32, f. 21.
B. range, 1917 f. \dagger Off Chesapeake Bay.

Neara obesa Lovén. v, 563, pl. 44, f. 10, c.
B. range, $19 \approx$ to 1290 f . ; 20 to 150 f . N. of Cape Cod. N., Arc., Eu., Azores.
Necera glacialis G. O. Sars. v. 562, pl. 44, f. $10, a, b$.
B. range, 64 to 547 f. N., Arc., Eu.

Neara rostrata (Speng.) Lovén. v, 562, pl. 58, f. 39.
B. range, 65 to $487 \mathrm{f} . \uparrow$; 85 to 155 f.* N., Eu., Med., Af., Azores. Cb., Patagonia.
Necera lamellosa M. Sars. v, 561; vi, pl. 30, f. 3.
B. range, 319 to 547 f. Eu., Med., Af.

Nevere multicostuta V. and S. \quad, 559, pl. 58, f. 40.
B. range, 85 to 158 f. (? Arc. Eu., Med.)

Necera multicostata, var. curta (J.). v, 560.
B. range, 115 to 120 f. \dagger Eu., Azores, Bermudas, P.

Necera perrostrata (Dall). v, 561.
B. range, 85 to 325 f . Cb .

Necera gigantea V. vi, 223.
B. range, $1917 \mathrm{f} . \dagger$ Off Chesapueake Bay.

Necera unclata V. vi, 223.
B. range, 2221 f. \dagger Off Chesapeake Bay.

Necera, sp.
B. range, 142 f. Off Cape Hatteras.

Kemnerlia glacialis (Leach) Carp. v, 56\%.
B. range, 63 to 100 f. N., Arc., Eu.

Clidiophora trilineata (Say) Carp.
B. range, 0 to 29 f . ${ }^{*}$; 45 to $126 \mathrm{f.t} \mathrm{~N} . \mathrm{S}$.

Periploma papyracea (Say) Con.
B, range, 7 to 1255 f . N .

Cochlodesma Leamum Couth. B. range. 2 to 20 f . ${ }^{*} ; 65 \mathrm{f} . \dagger \mathrm{S}$.

Thracie Comradi Couth.
B. range, $4 \frac{1}{2}$ to $193 \mathrm{f} . \uparrow$; 34 f .* N.

Thraciu uitide V. vi, 221, pl. 32, f. 22.
B. range, 1917 f. Off Chesapeake Bay.

Pecchiolia abyssicola Sars. v. 565.
B. range, 192 to 487 f.*; 516 to 1290 f. \dagger N., Arc., Eu.

Pecchiolia gemma V. v, 565; vi, 258, pl. 30, f. 7, 8.
B. range, 75 to 1290 f.†; 499 to 906 f.*

Verticordia celata V. v, 566; vi, pl. 30, f. 9, 9 a.
B. range, $100 \mathrm{f} . \dagger$

Mytilimeria flexuosa V. and S. v, 567, pl. 58, f. 38; vi, 258.
B. range, 75 to 319 f. $\dagger ; 349$ f.*

Pholadomya arata V. and S. v, 567, pl. 58, f. 37; vi, pl. 30, f. 4-6.
B. range, 71 to $134 \mathrm{f} . \dagger$ Eu.

Spisula solidissima Gray.
B. range, 0 to 192 f. $\dagger ; 0$ to 18 f.* N., S.

Spisula ovalis Gould.
B. range, 5 to $71 \mathrm{f} . \dagger$; $8 \frac{1}{2}$ to 15 f .* N.

Ceromia arctata (Con.) Ad.
B. range, 0 to 183 f. $\dagger ; 0$ to 2 f .* N .

Abra lioica (Dall) V. v, 568; vi, 224.
B. range, $100 \mathrm{f} . *$; $115 \mathrm{f} . \dagger \mathrm{Cb}$.

Abra longicallis (Scacchi). vi, 224.
B. range, 1467 f. \dagger Eu., Med., Canaries, Af., Azores, Cb.

Macoma sabulosa (Speng.) Mörch.
B. range, 30 to 208 f. $\dagger ; 29$ to 1255 f.* N., Arc., Eu., P., As.

Macoma, sp.
B. range, $100 \mathrm{f}+$.

Callista convexa (Say) Ad.
B. range, 0 to $21 \frac{1}{4}$ f. ${ }^{*}$; 85 f. \dagger N., S.

Cyprina Islandica (Linné) Lam.
B. range, 8 to 128 f.*; 130 to 349 f. \dagger N., Arc., Eu.

Astarte custanea Say.
B. range, 0 to 100 f.*; 142 to $43 \overline{\mathrm{~s}}$ f. \dagger N., S.

Astarte quadrans Gld.
B. range, 11 to 100 f . N.

Astarte ruduta Gld.
B. range, 8 to 480 f . N.

Astarte crenatu Gray.
B. range, $34 \frac{1}{2}$ to 640 f . N., Arc., Eu., As.

Venericardia granulata (Say) $=$ borcalis Con. v, 522; vi, 258.
B. range, 8 to 435 f.f; 9 to 192 f.* N.

Čardium pimmututum Comrad.
B. range, 1 to 266 f . N .

Cardium peramabilis Dall. v, 569.
B. range, $115 \mathrm{f} . \dagger \mathrm{Cb}$.

Loripes lens V. and S. v, 569; vi, 259.
B. range, 5 to $192 \mathrm{f} . \dagger ; 120 \mathrm{f}$.* N .

Lucina filosa Stimp.
B. range, 4 to $349 \mathrm{f} . \dagger$; 20 to 30 f .* N.

Cryptodon suboratus (J.) V. v, 570.
B. range, 480 f. \dagger; 499 f.* Eu., Af.

Cryptodon Gouldii (Phil.) Stimp.
B. range, 6 to 1467 f. N., Eu.

Cryptodon obesus V. v, 569.
B. range, 12 to $100 \mathrm{f} .+; 115$ to $1290 \mathrm{f} . * \mathrm{~N}$.

Cryptodon ferruginosus (Forbes). v, 570.
B. range, 100 to 1467 f. N., Arc., Eu., Med.

Cryptodon tortuosus (Jeff.). vi, 226.
B. range, 499 to 1290 f. Eu.

Axinopsis, sp. nov.
B. range, 1451 f .

Diplodonta turgida V. and S. v, 569, pl. 58, f. 42; vi, pl. 30, f. 10, 11.
B. range, 65 to 98 f. \dagger

Montacuta ovata Jeff. v, 571.
B. range, $8 \frac{1}{2}$ to 157 f. \dagger Eu.

Montacuta tumidula Jeff. vi, 225.
B. range, 843 to 1091 f. Southern. Eu.

Kelliella, sp. nov.
B. range, 2033 f .

Solemya velum Say.
B. range, 0 to $10 \mathrm{f} . *$; 9 to $115 \mathrm{f} . \dagger$ N., S.
S. velum, var. borealis (Totten).
B. range, 1 to 349 f. \dagger; 56 to 300 f .* N., S.

Foldia thraciformis (Storer) Stimp.
B. range, 29 to 182 f. \dagger; 192 to 906 f.* N.

Yoldia sapotilla (Gld.) Stimp.
B. range, $4 \frac{1}{2} \mathrm{f} . \dagger ; 12 \frac{1}{2}$ to 321 f .* N., Arc.

Yoldia limatula (Say) Woodw.
B. range, $3 \frac{1}{2}$ to 252 f . N., S.

Yoldia expansa Jeff.
B. range, 365 f.*; 1451 to 1467 f. \dagger Eu.

Yoldia lucida Lovén. v, pl. 44, f. 1.
B. range, 29 to 1608 f. $+; 115$ to 1290 f.* N., Arc., Eu., Med.

Yoldia frigida Torell. v, 573, pl. 44, f. 2.
B. range. 157 to 1255 f. N., Arc., Eu., Med., As.

Yoldia Jeffreysi (Hidalgo). vi, 229.
B. range, 349 f.*; 499 to 1290 f. \dagger Eu., Med., Af., Azores, Cb.

Yoldia subequilatera (Jeff.). vi, 229.
B. range, 499 to 1731 f . Eu., Arc.

Yoldia regularis V. vi, 228.
B. range, $349 \mathrm{f} . \dagger$

Yoldia sericea Jeffreys, var. striolata J. vi, 226.
B. range, 516 to 1731 f. Eu.

Yoldia Messanensis (Seguenza). var. vi. 227.
B. range, 1451 to $2033 \mathrm{f} .+$; 1467 f .* Eu., Med., Azores, Cb.

Ledla acuta (Comrad). v, 5~2, pl. 58, f. 41; vi. 259, pl. 30, f. 15.
B. range, 64 to $225 \mathrm{f} . \dagger$; 65 to 115 f.* S. (? Eu., Med.)

Leda Bushiana V. vi, 229.
B. range, 516 f . Off Cape Hatteras.

Leda permula (Müll.). r, 572; vi, pl. 30, f. 14, 14 a.
B. range, 216 f. $\dagger ; 300$ to 349 f.* N., Arc., Eu., P.

Leda tenuisulcata (Couth.) Stimp.
B. range, 25 to 120 f. \dagger; 640 f.* N.

Phaseolus ovatus? (Jeff. MSS.). vi. 230.
B. range, 1290 f. (? Eu.)

Malletia obtusa (M. Sars) Mörch. vi, 226.
B. range, $516 \mathrm{f} .+; 788$ to 1608 f.* Eu.. Med.

Glomus nitens Jeff. vi, 231.
B. range, $1608 \mathrm{f} . \dagger$ Eu.

Nucula delphinodonta Mighels.
B. range, 10 to 1290 f. N., Arc., Eu.

Nucula proxima Say.
B. range, $3 \frac{1}{2}$ to 302 f .*; 310 to 516 f. $\dagger \mathrm{S}$.

Nucula tenuis (Mont.) Turton.
B. range, 75 to 266 f. $\uparrow ; 302$ to 1255 f.* N., Arc., Eu., Med., Cb., P., As. Nucula cancellata Jeff. vi, 231.
B. range, 858 f. $\dagger ; 906$ to 2033 f.* Eu., Azores.

Nucula granulosa Verrill, sp. nov. \ddagger
B. range, 487 to 858 f.*

Arca pecturculoides Sc. v, 573, pl. 44, f. 6.
B. range, 79 to 640 f. N., Eu., Med., Cb.

Area pectunculoides, var. septentrionatis Sars. v, 573.
B. range, 79 to 640 f. N., Arc.

Area pectunculoides, var. Frielei (Jeff.). v, 574.
B. range, 156 to 487 f. N., Eu., Med.

Arca pectunculoides, var. cremulute V. v, 575.
B. range, 85 to 120 f .

Limopsis minuta (Phil.). v, $5 \% 6$.
B. range, 64 to $115 \mathrm{f} .+; 120$ to $2221 \mathrm{f} . *$ N., Arc., Eu., Med., Af., Azores.
Limopsis cristata Jeff. v, 577; vi, 231.
B. range, 549 f. \dagger Eu., Med.

Limopsis, sp.
B. range, 197 to 2221 f .
\ddagger Nucula grourtosa V. A small species, 2.5 mm long, 2 mm broad, broad ovate, with the beaks anterior and tumed forward, posterior end rounded, anterior tip angularly truncated, a well defined and rather large lumbe bordered by an angular ridge. Surface greenish yellow, dull, closely covered with microscopic granules, and with fine lines of growth. Margin plain, thickened. Hinge-margin rather stont, eurved, with about 5 anterior and \boldsymbol{i} posterior tecth, which are relatively strong. Cartilage-pit large. Stations 892, 1880; 2072, 1883.

Limopsis tenella Jeff. vi, 239.
B. range, 1 \%31 to 2033 f . Eu.

Mytilns edulis Limnê.
B. range, 0 to $57 \frac{1}{2}$ f.* (perhaps from surface Fuci); 1608 f. \dagger Oc., S., N., Arc., Eu., Med., P., Antarctic.

Morliola modiolus (Limué) Turton.
B. range, 0 to 115 f.*; 202 f. \dagger N., Arc., Eu., P., As.

Modiolaria nigra (Gray) Lovén.
B. range, 0 to $27_{\frac{1}{2}}$ f.*; 31 to 65 f. \dagger N., Arc., Eu., P.

Modiolaria discors (Limé) Lovén.
B. range, 15 to 90 f. N., Arc., En., Med., P., As.

Modiolaria corrugate (Stimp.) Mörth.
B. range, 18 to 45 f.* ; 20 to 25 f. \dagger N., Arc., Eu.

Modiolaria polita V. and S. v, 5i8; vi, pl. 30, f. 12.
B. range, 238 to 321 f. Cb., En.

Crenella glandula (Totten) Ad.
B. range, 0 to $11 \mathrm{f}+;$.5 to 100 f ." N.

Crenella decussata (Mont.) Macg. v, 5\%8, pl. 44. f. 7.
B. range, 5 f. \dagger; 11 to 115 f.* N., Arc., Eu., Cb., P.

Idas argenteus Jeff. v, 579; vi, pl. 30, f. 16, 16α.
B. range, 335 to 2033 f.* on wood. Surface? (on wood). Eu.

Ducrydium vitreum (Möll.) Torrell. v, 579, pl. 44, f. 8, $8 u$.
B. range, 300 f. $\dagger ; 312$ to 1555 f.* N., Arc., En., Med., Af., Azores.

Pecten Clintonins Say. vi, 261.
B. range, 8 to 349 f.t; 13 to 146 f.* N.

Pecten Islandicus Müller.
B. range, 33 to 122 f.*; 124 to 194 f. \dagger N., Arc., Eur., P., As.

Pecten glyptus V. v, 580.
B. range, 69 to 156 f. \dagger

Pecten striatns Müller. vi, 233.
B. range, 100 f. \dagger Eu., Med.

Pecten vitreus (Gmel.) Wood. v, 581, pl. 42. f. 21.
B. range, $57 \frac{1}{2}$ to $64 \mathrm{f} .+$; 100 to 787 f.* N., Arc., Eu., Med., Af.

Pecten pustulosus V. v, 581, pl. 42, f. 22, 22a; vi, 261.
B. range, $99 \frac{1}{2}$ to $321 \mathrm{f} . *$; 365 to $547 \mathrm{f} . \dagger$ N., Eu.?

Pecten leptaleus V. vi, 232.
B. range, 142 f. Off Cape Hatteras.

Pecten fragilis Jeff. vi, 232.
B. range, 843 f. Off Cape Hatteras. Arc., Eu., Azores.

Amussinm, sp. nov. v, 582; vi, 261.
B. range, $79 \mathrm{f} .+; 86$ to $317 \mathrm{f} . *$

Limcea subovata (Jeff.) Monteros. v, 580.
B. range, 100 to 1362 f. \dagger; $252 \frac{1}{2}$ to 1290 f.* Eu., Arc., Med., Azores.

Avicula hirundo (L.). v, 582.
B. range, 71 f.*: 89 f. \dagger Eu., Med., Can., Azores, Cb., Oc.

Avicula hirundo, var. niticla V. v, 582, pl. 58, f. 43.
B. range, 64 to 192 f . Oc.

Avicula squamulosa? Lam. vi, 233.
Surface.* S., Oc.

Anomia acnleata Müll.
B. range, 4 to 640 f. N., Arc.. Eu.

BRACHIOPODA.

Terebratulina septentrionalis (Couth).
B. range, 16 to 396 f. N., Arc., Eu., Af.

Waldheimia cranium (Müller) Davidson, vi, 234.
B. range, 1362 f. \dagger Arc., Eu., P.

Discina Atlantica King. vi, 233.
B. range, 1251 to 1467 f. \dagger Eur., Arc., Med., Australia.

List of Species found between 1000 and 2000 fathoms.
The following list comprises those of the species above enumerated which we have dredged between 1000 and 2000 fathoms, with the observed bathymetrical range in this region. Those printed in Italics have not been taken by us in less than 1000 fathoms.

CEPHALOPODA.

	Fathoms.		Fathoms.
Ommastrephes illecebrosus V. $0-1022$	Desmotenthis tenera V.	$369-1346$	
Mastigoteuthis Agassizii V.	$640-1050$	Alloposus mollis V.	$238-1735$
Chiroteuthis lacertosa V.	$435-2221$	Octopus piscatorum V.	1362
Leptoteuthis diaphana V.	1731	Octopus gracilis V.	1290
Callitenthis reversa V.	$365-2369$	Eledone verrucosa V.	$787-1255$

GASTROPODA.

Toxoglossa.
Admete Couthonyi (Jay) Ad. 155-125i)
Pleurotomella Agassizii V. 39-1608
Pleurotomella Bairdii V. 1608-2221
Pleurotomella Benedicti V. \& S. 1290
Pleurotomella SandersoniV.1290-2033 Pleurotomella Saffordi V. \& S.

843-1608
Pleurotomella bandella Dall 1290-2033
Pleurotomella Emertoni V. 191\%
Pleurotomella Brumeri V. 1608-2033
Pleurotomella Catharinæ V. 843-2033
Gymnobela engonia V.
Gymnobela curta V.
Gymnobela curta, var. sub-
angulata V. 197-2033
Gymnobela hebes V. 252-2033

Toxoglossa.
Bela pygmæa V.
Fathoms. 312-1290 1395
Spirotropis ephamilla V. 1917-2221 Typhlomangilia Tanneri V. \& S. 1290 Taranis Mörchii, v. tornatus V. 1255

Rachiglossa.

Buccinum alysssorum V. \& S. 49-1309
Sipho profundicola V. \& S. 1497-2033
Sipho profundicola, var.
dispar V .
1555
Sipho ceelatus, var. hebes V. 640-1255
Sipho (Mohnia) cælatulus V. 516-1290
Trophon clavatus Sars 843-2033
Astyris pura V. 71-1255

SCAPHOPODA.

	Fathoms.		Fathoms.
Dentalium solidum V.	$843-1309$	Siphonodentalium vitreum	
Dentalium striolatum Stimp. $25-1255$	M. Sars	$100-1290$	
Dentalium occidentale Stimı.	$26-1255$	Siphonodentalium teres Jeff. 843-1290	
Dentalium occidentale, var.		Siphonentalis affinis (Sars)	$349-1731$
\quad sulcatum V.	$75-1255$	Cadulus grandis V.	$843-1467$
Dentalium, sp. g.	$1731-2033$	Cadulus cylindrutus V.	1608
Dentalinm, sp. \boldsymbol{h}.	$843-2033$		

LAMELLIBRANCHIATA.

	Fathoms.		Fathoms.
Teredo megotara Han. surface		Cryptodon Gouldii (Phil.)	
and	55-1467	Stimp.	6-1467
Xylophaga dorsalis F. \& Han.		Cryptodon obesus V.	12-1290
Poromya sublevis V.	1917	Cryptodon ferruginosus	
Necera gigantea V.	1917	(Forbes)	100-1467
Neæra obesa Lovén	20-1290	Axinopsis,	51
Periploma papyracea (Say)		Montacuta tumidula Jeffr	843-1091
Con.	7-1255	Malletia obtusa (M. Sars)	
hracia nit	1917	Mörch.	516-1608
Pecchiolia abyssicola Sars	192-1290	Nucula delphinodonta Mig	els 9-1290
Pecchiolia gemma V.	75-1290	Nucula tenuis (Mont.) Tur	75-1255
Abra longicallis (Scacchi)	1467	Nucula cancellata Jeffrey	858-2033
Macoma sabulosa (Speng.)		Yoldia Messanensis (Segu	za),
Mörch.	29-1255	variety	1451-2033
Cryptodon tortuosus Jeff.	499-1290	Yoldia expansa Jeffreys	365-1467

Trans. Conn. Acad., Vol. VI.

| | Fathoms. | | Fathoms. |
| :--- | ---: | :--- | ---: | ---: |
| Yoldia sericea, var. striolata | | Glomus nitens Jeffreys | 1608 |
| Jeffreys | $516-1731$ | Limopsis minuta (Phil.) | $64-2221$ |
| Yoldia lucida Lovén | $29-1608$ | Limopsis, sp. | $197-2221$ |
| Yoldia frigida Torell | $157-1255$ | Limopsis tenella Jeffreys | $1731-2033$ |
| Yoldia subequilatera (Jeff.) | $499-1731$ | Idas argenteus Jeff. | $335-2033$ |
| Yoldia Jeffreysii (IFidalgo) | $349-1290$ | Dacrydium vitreum (Möll.) | $300-1555$ |
| Phaseolus ovatus? (Jeff. MSS.) | 1290 | Limæa subovata (Jeffreys) | $100-1362$ |

BRACHIOPODA.

	Fathoms.	Fathoms.	
Discina Atlantica King	$1251-1467$	Waldheimia cranium (Müller)	
		Davidson	

List of Species dredged by the U. S. IFish Commission at depths exceeding 2000 fathoms.

Those species in Italic type were not taken in less than 2000 fathoms. A dagger (\dagger) after a depth indieates that the speeimens were dead shells ouly.

CEPHA LOPODA.

| | Fathoms. | | Fathoms. |
| :--- | ---: | :--- | ---: | :--- |
| Chiroteuthis lacertosa V. | $435-2221$ | Calliteuthis reversa V. | $365-2369$ |
| | (2949) | Eledonella pygmara V. | 2949 |

GASTROPODA.

Toxoglossa.
Pleurotomella Bairdii V. \& S .

1608-2221 \dagger
Pleurotomella Sandersoni V.1290-2033
Pleurotomella bandella D. 1290-2033
Pleurotomella Bruneri V. 1608-2033
Pleurotomella Catharinæ V. 843-2033
Gymnobela curta, var. subangulata V .
Gymnobela hebes V.
Spirotropis ephamilla V.

Rachiglossa.

Sipho profundicola V. \& S. 1497-2033 Sipho hispidulus V.
Trophon clavatus Sars

197-2033 |
252-2633 |
1917-2221

Fathoms.

Tentoglossa. Benthodolium abyssorum
V. \& S.

Fathoms.
1395-2221
Cithna tenella, var. costulate Jeff. 2033 Seguenzia formosa Jeffreys 1290-2033 Seguenzia formosa, var. nitida V. 2033 Seguenizia eritima V. 1290-2033

Rhiphidocilossa.
Cyclostrema diaphanum V.1290-2023†
Cocculina leptalea V. 1395-2033
Gymnoglossa.
Eulimella charicssa V. 2033
Eutimella lucida V. 2033
Eulimella nitida V. 2033
Tectibranchiata.
Diaplana gemma V.
100-2033

SCAPHOPODA.

Dentalium, sp. g.	Fathoms. 1731-2033	Dentalium, sp. h	Fathoms. $843-2033$
LAMELLIBRANCHIATA.			
Xylophaga dorsalis F. \&	Fathoms. \& Han. 32-2033	Nucula cancellata Jeffreys	Fathoms. 858-2033
Wecera undata V.	2221+	Limopsis minuta Plinl.	64-2221
Kelliella, sp. nov.	2033	Limopsis, sp.	197-2221
Yoldia Messanensis (Se-		Limopsis tenella Jeffreys	1731-2033
guenza)	1451-2033	Idas argenteus Jeff.	335-2033

Species also taken by the Blake Eipeditions in the Gulf of Mexico, Caribbean Sea, or Straits of Florida.

The following species have been recognized by Mr. Dall, among the Blake shells, or else have been identified by the writer with those recorded by him, or by personal comparison of specimens. Probably other cases of identity will occur when the whole of the Blake collections shall have been fully studied. The identity of some of these is still doubtful.

Abralia megalops Verrill.
Pleurotoma comatotropis Dall.
Daphnella limacina (Dall).
Pleurotomella bandella Dall.
Pleurotomella Emertoni Verrill.
Taranis Mörchii (Malm) Jeffreys.
Seguenzia formosa Jeffreys.
Actæon melampoides Dall.
Ringicula nitida Verrill.
Leptothyra induta Watson.
Calliostoma Bairdii Verrill \& Smith.
:Margarita lamellosa Verrill \& Smith (? M. ægleës Watson, Dall).
Cadulus Watsoni Dall.
Poromya granulata (Nyst) Forbes \& Hanley.
Neæra perrostrata Dall.
? Neæra multicostata Verrill \& Smith $(?=$ N. alternata (D'Orb.) Dall.

Neæra rostrata (Spengler) Lovén.
Abra longicallis (Scacchi).
Abra lioica (Dall) V.
Cardium peramabilis Dall.
? Cryptodon obesus Verrill.
? Leda acuta Conrad (? $=$ L. Jamaicensis Dall).
Yoldia Messanensis (Seguenza).
Yoldia Jeffreysii (Hidalgo).
Arca pectunculoides Scacchi.
Nucula tenuis (Mont.) Turton.
Limopsis minuta (Philippi).
Limopsis tenella Jeffreys.
Limopsis cristata Jeffreys.
Modiolaria polita Verrill and Smith.
Crenella decussata (Mont.) Macg.
Ammusium, sp. nov.
I.-Summary of Mollusca included in the preceding lists.

II.-Table illustrating Batlymetrical Distribution.

All the species and named varieties are counted together, whether of shallow or deep water origin, except in the second column. Those species that have not been found in this region in more than 60 fathoms are not included in the eighth column, otherwise the entire molluscan fauna, living between the shore and 60 fathoms, would have to be enumerated.

	䔍 0 0 0 0 0 0 0 0 0 0 0						¢	\%	发
Cephalopoda	27	27	3	10	15	15	10	2	2
Gastropoda .-	216	205	22	56	76	107	124	38	14
Toxoglossa	36	34	8	19	13	15	12.	4	0
Rachiglossa	33	29	3	7	16	21	25	7	0
Tenioglossa	38	35	5	13	11	20	23	11	1
Ptenoglossa	10	10	0	0	3	3	7	0	1
Rhiphidoglossa	30	28	2	5	13	17	14	2	0
Gymnoglossa	20	20	3	5	5	8	11	1	0
Tectibranchiata	23	23	1	7	13	15	19	5	0
Nudibranchiata	13	13	0	0	0	5	8	7	4
Polyplacophora	5	5	0	0	2	3	5	1	${ }_{8}$
Heteropoda --.	8	8							8
Pteropoda .-.	24	23							23
Solenoconcha	16	15	$\stackrel{2}{8}$	11	12	9	8	2	0
Lamellibranchiata	115	107	8	36	45	59	85	46	3
Brachiopoda .-.	3	3	0	2	0	1	1	1	0
Total Mollusca and Brachiopoda	401	380	35	115	148	191	228	89	42

III.-Table showing the Progress of Discovery of our deep water Mollusca.

		$\begin{aligned} & \dot{3} \\ & \frac{5}{4} \\ & 0 \\ & 0 \\ & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$								\dot{E}	Eِ							
Species and named varieties in list						30												401
Recorded before 1880	11		11	13	1	14	2	2		8	6		5	3	5		1	125
Added since 1880	16	31	22	25	9	22		18	15	5	7		19	13			2	276
Added in 1883.											0			8			2	121
Described as new by the writer since 1880								113			3			4			0	158
Described as new by the writer since 1883				1.10					6. 1		0		0	3			0	72

In the above list are included 380 species and 21 named varieties. But of these, at least 42 are pelagic species, taken either alive at the surface or dead at the bottom, viz: Cephalopoda, 2; 'Tænioglossa, 1 ; Ptenoglossa, 1; Nudibranchiata, 4; Heteropoda, 8; Pteropoda, 23; Lamellibranchiata, 3. Possibly a few other species, now considered as deep-water forms, may be pelagic, for it is difficult to tell at what depths free-swimming species of Cephalopods are taken, unless they also occur in the stomachs of deep sea fishes. Many small Gastropods, etc., living habitually on floating Fhecus and Srurqassum, are canght with these sea-weeds in the trawl, on its way up or down, and mingling with the shells from the bottom may give rise to errors of this kind. Thus some of the species of Rissoa, Cingula, Cithna, etc., may not really live at the depths recorded, but at the surface. When satisfied of this accidental occurrence of some of the common shore species (Littorina, etc.), I have omitted them from the list, but have included the strictly pelagic forms, like Litiopa, for convenience.

Of the 343 species aud 19 named varieties regarded as living at the bottom, 89 are also shallow-water species, living habitually in less than 60 fathoms, on this part of the coast. A considerable number, now considered as deep-water species in this region, occur in shallow water north of Cape Cod, and some of them may eventually be found to occur in the cold belt, off Martha's Vineyard, in 25 to 60 fathoms.

Of the 89 shallow-water species, 63 occur also between 200 and 500 fathoms, and 19 below 1000 fathoms. Some of these have a remark. ably great range geographically, as well as in depth.

Of the 259 species and 14 varieties regarded as belonging to the deepwater fama, in this region, 143 occur in the comparatively warm zone, between 60 and 200 fathoms. A considerable number of these have been taken only in the more southern dredgings, off Chesapeake Bay and Cape Hatteras, and some of them only in depths not much exceeding 100 fathoms, where the Gulf Stream has the greatest effect. In this zone the sonthern genera, Dolium, Marginella, Solarium, Avicula, etc. occur. The number that occupy the zone between 200 and 500 fathoms is 128 , besides 63 shallow-water species, while 118 inhabit the depths between 500 and 1000 fathoms, associated with 30 shallowwater forms, and 96 have been taken between 1000 and 2000 fathoms, associated with 19 shallow-water ones. Although but five of our dredgings have been in more than 2000 fathoms, we are able to record 35 species from between 2000 and 3000 fathoms, which is a much greater number than has hitherto been recorded from such depths in the north Atlantic.

The different groups of mollusca differ greatly in the relative proportion of deep and shallow-water species, as shown by the following tables. Thus the deep-water Cephalopods are 23, against 4 shallowwater and surface species. The Gastropods exclusityely deep-water are 166, against 38 of shallow-water origin. The shallow-water Lamellibranchs, however, seem to have a much greater tendency to range into deep-water, for of these there are lout 68 deep-water species, associated with 46 shallow-water ones.

The species and varieties described as new, in this paper, are 72, as follows: Cephalopoda, 4 ; Gastropoda, 56 ; Solenoconcha, 3 ; Lamellibranchiata, 9 . The total number of species of mollusea added to the fauna of this region by the Fish Commission dredgings, since 1880 , is about 300 , but only 276 of these are included in the above list; of these 121 were obtained in 1883.

Among the peculiarities of the deep-water mollusea the oceurrence of an unusual proportion of Toxoglossa, many of which are handsomely sculptured and of large size, is a noteworthy feature. Tectibranchs are also abundant and some of them large. Rhiphidoglossa are also relatively abundant and present some striking and elegant forms of Trochidæ, while there are 13 limpet-like forms belouging to this group, including the genera Cocculina, Addisonia, Lepetella, Propilidium. The Solenoconcha or Scaphopoda are relatively much more abundant, and some of the species are much larger in 500 to 2000 fathoms than in shallow-water. This must be regarded as mainly a deep-sea group.

Among Lamellibranchs the groms that are relatively most numerously represented are the Anatinidre and Corbulidse, (especially the genus Necera); the Nnculidx, including the genera Nucula, Leda, Foldia, Malletia Glomus, etc.; and the Arcidæ, including Arca and Limopsis. The Lucinidæ and Pectenidæ are also well represented.

ERRA'TA.

Page 152, line 23, for Diomeder, read bandella Dall (sce p. 250).
Page 160, line 9, and page 226, line 23, for Bela hebes read Gymnobela hebes. An examination of the animal shows that this species has no operculum. The nucleus is imperfect in all of our specimens. It is closely allied to G. curta. The latter may prove to be only a varicty, when larger series can be compared.
Page 163, live 34, for Typhlomangelia read Typhlomangilia.
Page 175 , line 26 , for figure 14 , read figure 16 .
Page 193 , lines 10 and 15 , and page 194, line 33 , for charissa, read chariessa.
Page 218, line 23, for 35165 , read 35163 .
Page 238, line 6, for 306 , read 302.
Page 250, lines 2 and 25, for 1881, read 1882.

ERRATA FOR VOL. V.

The following errata have been noticed in the former catalugue.
Page 448, line 15, for Sept. 15, read Sept. 13.
Page 511, line 7 from bottom, for Mörch, read Möll.
Page 520, line 23, for umbiblical, read umbilical.
Page 523, lines 1, 2, for bombix, read bombyx.
Page 529, lines 27, 28, for Atalanta, read Atlanta.
Page 529, last line, for Bolton, read Bolten.
Page 535, line 21, add off Halifax, 190 fath.; off Block I., 6-15 fath., 1874.
Page 539, line 9, for Plusianella, read Plasianella.
Page 540, last line, for perisotraca, read periostraca.
Page 551, line 8, read Cape Breton Island.
Page 553, line 12, for Galvinia, read Galvina.
Page 567, line 31, before Leche, insert Nova Zembla and Kara Sea.
Page 572, line 9, for Novu-anglice, read Novanglice.
Page 578, line 18, for mytilus, read Mytilus.

explanation of tile plates.

Plate NXVIII.

Figure 1.-Argonauta argo Linné, p. 247. From an alcoholic specimen taken off Long Island. Side view ; natural size.
Figure $1 a$.-Front view of the shell of the same specimen; natural size.
Figure 1b.-Side view of the same shell.
Figure 2.-Abralia megalops V., p. 143. Type specimen. Front view of one of tha sessile arms; $\times 2$ diameters.
Figure 3.-Pleuropus Hurgeri Y., p. 275. Type specimen. Side view of the shell and animal in alcohol ; enlarged.
Figure 4.-Atlanta Peronii Les., p. 27.4. Side view of a large but somewhat broken specimen; $\times 8$ diameters.
Figure $4 a$.-The same. Front view; $\times 8$ diameters. The nucleus is broken.
Figure 5.-Heterodoris robusta V. and E., p. 274. Type specimen. Dorsal view natural size.
Figure $5 a$.-The same. Tentral view ; natural size.
Figure 6.-Doris complanata V. and E., p. 274. Dorsal view of a specimen having the gills partially retracted; one-half natural size.
Figure 7.-Koonsia obesa Y., p. 274. Dorsal view of a specimen a short time in alcohol, but having the dorsal portion of the body much contracted, while the gill and reproductive organs are more displayed than usual ; one-half natural size.
Figure 8.-Crcum Cooperi Smith. Dorsal view of the extended animal and front part of the shell from a living specimen; enlarged about 12 diameters.

Plate XXIX.

Figure 1.-Trophon Lintoni T., p. 176. Type specinen. Front view; $\times 2$ diameters. Figure 2.-Dolium Bairdii V. and S., p. 253. Front view; natural size.
Figure 2a.-The same. Part of the odontophore; $\times 22$ diameters.
Figure 2b.-The same. Dorsal view of the partially contracted animal preserved in alcohol.
Figure 3.-Lunatic levicula V. Front view of one of the largest specimens taken; natural size.
Figure 4.-Marginella boreulis V., p. 165. Front view of one of the first specimens taken, which was dead and somewhat eroded; $\times 2$ diameters.
Figure 5.-Cithna (?) olivacea V., p. 185. Front view of the type specimen; $\times 8$ diameters.
Figure 6.-Capulus Hungaricus (Linné), p. 269. Dorsal view of the largest specimen; $\times 1 \frac{1}{2}$ diameters.
Trans. Conn. Acad., Vol. VI.

Figure 7.-Pleurotomella Packardii \bigvee^{\top}., p. 265. Dorsal view of the anterior part of the animal from an alcoholic specimen, male; enlarged about 4 diameters.
Figure 8.-Taranis pulchella V., p. 267. Front view of the largest specimen taken; $\times 8$ diameters.
Figure 9.-Choristes clegons Carp., var. teneru Y., p. 256. Top view of a very young specimen; much enlarged.
Figure 9a.-The same. Top view of a somewhat older speeimen, enlarged to the same extent.
Figure 96 .-The same. Basal view of a still older speeimen, enlarged the same.
Figure 10-Addisonia puradoxa Dall, p. 256. Part of the odontophore; mueh enlarged.
Figure 11.-The same. Side view; $\times 2$ diameters.
Figure 11a.-Dorsal view of the same specimen; $\times 2$ diameters.
Figure 11b.-The same. Ventral view of the animal and shell of a larger specimen in alcohol ; $\times 2$ diameters.
Figure 12.-Cocculina Beanii Dall, p. 271. Side view; $\times 8$ diameters.
Figure 13.-Fissurella Tanneri V., p. 255. Type specimen. Top view; natural size.
Figure 13a.-The same specimen, side view.
Figure 14.—Margarita regalis T . and S., p. 254. Part of one side of the odontophore ; much enlarged.
Figure 15.-Cylichna Dalli Y., p. 274. Type specimen. Front view; $\times 4$ diameters.
Figure 16.-Dlangilia cerina V., p. 250. View of a portion of the shell and extented animal from a living specimen; enlarged about 8 dianeters.
Figure 16a.-The same. Dorsal view of the head and front part of the foot, more extended.

Plate XXX.

Figure 1.-Placophora Allantica V. and S., p. 206. Ventral view of the type specimen; natural size.
Figure $1 a$.-Dorsal view of the same specimen.
Figure $1 b$.-The same. Detached valves; a, dorsal side of the auterior valve; b, ventral side of the same valve ; c, dorsal side of one of the middle valves; d, dorsal side of the posterior valve, and e, ventral side of the sime valve; $\times 2$ diameters.
Figure 2.-Trachydermon exarutus (Sars), p. 208. Dorsal view; $\times 2$ diameters.
Figure $2 a$.-Ventral view of the same speeimen.
Figure 2b.-The detached anterior valve of the same specimen; a, dorsal side; b, ventral side; $\times 4$ diameters.
Figure 3.-Necrra lamellosa M. Sars, p. 277. Side view ; $\times 10$ diameters.
Figure 4.-Pholadomye arata V. and S., p. 278. Anterior view of a large left valve; natural size.
Figures 5, 6.-The same. V'jew of the beak and hinge of two speeimens to show variations in the hinge; $\times \geq$ diameters.
Figure 7.-Pecchiolia gemma, vi, j. 258. Type specimen. View of the interior of the left valve, $\times 6$ diameters.
Figure 8.-The sume. View of the exterior of the right valve of a larger example.
Figure 9.-Verticordia culula V., p. 278. Type specimen. View of the exterior; $\times 8$ diameters.
Figure $9 a$.-The same valve, view of the interior; $\times 8$ diameters.

Figure 10.-Diplotonta turgida V. and S., p. 279 . View of the exterior of the right valve; natural size.
Figure 11.-The same. View of the interior of a somewhat smaller valve; natural size.
Figure 12.-Modiolaria polita T. and S., p. 281. Type specimen. Side view of a small speeimen; natural size.
Figure 13.-Tellimya ferruginosa (Mont.). Side view of a living specimen with the animal fully extended; enlarged about 8 diameters.
Figure 14.-Leda pernula (Müll.), p. 280. Side view of a speeimen having the beak curved more than usual ; $\times 2$ diameters.
Figure 14a.-The same specimen. View of the hinge; $\times 4$ diameters.
Figure 15.-Lella acuta V., p. 259. Side view ; $\times 3$ diameters.
Figure 16.-Idas argenteus .Jeff., var. lemellosa V., p. 281. Side view ; $\times 6$ diameters. Figure $16 a$.-The same. View of the interior of the right valve ; $\times 6$ diameters.

Plate XXXI.

Figure 1.-Pleurotomella Bairdii V. and S., p. 147. Front view of one of the stouter specimens, ascertained to be a female by examination of the auimal; natural size. Figure 2.-Plearotomella Bencdicti V. and S., p. $148 ; \times 2$ diameters.
Figure $2 a$.-The same. Apical whorls; $\times 22$ diameters.
Figure 3.-Pleurotomella Sandersoni V., p. 149; $\times 4$ diameters.
Figure 3a.-The same. Nuclear whorl ; $\times 22$ diameters.
Figure 4.-Pleurotomella Saffordi V. and S., p. 151; $\times 3$ diameters.
Figure $4 a$.-The same. Nuclear whorls; $\times 22$ diameters.
Figure 5.-Pleurotomella bandella (Dall) $=P$. Diomedeer V. and S., pp. 152 and 250 ; $\times 3$ diameters.
Figure 5a.-The same. Nuelear whorls; $\times 22$ diameters.
Figure 6. - Pleurotomella Emertoni Y. and S., p. 154; $\times 2$ diameters.
Figure 7.-Plenrotomelle Bruneri V. and S., p. 155: $\times 2$ diameters.
Figure $7(t$. -The same. Protile view of a younger specimen ; x I diameters.
Figure 8.-TyphLomangilia Tanneri V. and S., p. 163; $\times 2$ diameters.
Figure 9.--Pleurotomella Catharince V. and S., p. $155 ; \times 4$ diameters.
Figure $9 a$.-The same. Nuclear whorls; $\times 22$ diameters.
Figure 10.-Gymnobela curta V., p. $158 ; \times 2$ diameters.
Figure 11.-Buccinum cbyssorum $\mathrm{r}_{\text {. and }} \mathrm{S} ., \mathrm{p} .167$; natural size.
Figure $11 a$.-The same. Operculum of another specimen; natural size.
Figure 11b.-The same. Dentition.
Figure 12.-Benthotolium abyssorum V. and S., p. 177; natural size.
Figure 12a.-The same specimen. © Operculum ; natural size.
Figure 12b.-The same specimen. Dentition; $\times 75$ diameters.
Figure 12c.-The same. Marginal portion of one of the jaws; $\times 22$ diameters.
Figure 13.-Sipho profundicola V. and S., p. 170; natural size.
Figure 14.-Seguenzia formosa Jeffreys, p. $186 ; \times 8$ diameters.
Figure 14a.-The same. Opereulum; more enlarged.
Figure 14b.-The same. Dentition ; $\times \mathbf{2 5 0}$ diameters.
Figure 15.-Seguenzia eritima V., p. $189 ; \times 8$ diameters.
Figure 16.—Sipho leptaleus V̌., p. 175; $\times 6$ diameters.

Plate XXXII.

Figure 1.-Leptoteuthis diaphana Yr., p. 141. Dorsal view; natural size.
Figure 2.-Elchonella pygmupe Y., p. 145. Side view of the hectocotylized arm; enlarged about five diancters.
Figure 3.-Eulimellu lucida, V., p. 192; $\times 8$ diameters.
Figure $3 a$.-The same. View of the upper whorls; $\times 22$ diameters.
Figure 4.-Eulimella chariessa V., p. 193; $\times 8$ diameters.
Figure $4 a, b$. The same. Different views of the upper whorls; $\times 22$ diameters.
Figure 5.-Eulimella nilida V., p. $194 ; \times 8$ diameters.
Figure 6.-Eutimella lissa V., p. $195 ; \times 8$ diameters.
Figure 7.- Cithna cingulata V., p. 184; $\times 8$ diameters.
Figure 8.-Cingula apicina V., p. 183; $\times 4$ diameters.
Figure 9.-Cingula brychia T., p. $179 ; \times 8$ diameters.
Figure 10.-Cingula leptalea Y., p. $182 ; \times 8$ diameters.
Figure 11.-Cingula syngenes V., p. $180 ; \times 8$ diameters.
Figure 12.-Turbonilla costulata V. One of the original type-specimens from Vineyard Sound, shallow water ; $\times 8$ diameters.
Figure 13.-Turbonilla areolate V. One of the original type-specimens from Vineyard Sound; $\times 8$ diameters.
Figure 14.-Cyclostrema cingulatum V., p. 198. Basal view of the type specimen: $\times 8$ diameters.
Figure 15.-Cyclostrema affine V., p. $199 ; \times 8$ diameters.
Figure 16.-Cyclostrema diaphanum V., p. 199. Basal view; $\times 8$ diameters.
Figure 17.-Cyclostrema Dalli Y^{\top}., p. 255. Basal view of a peculiarly sculptured specimen (var. ornatum) from station $2115 ; \times 8$ dianneters.
Figure 18.-Scaphunder nobilis Y., p. 209. Eront view of a medium sized specimen; natural size.
Fignre 18a.-The same. View of a portion of the surface to show the character of the punctations; much enlarged.
Figure $18 b$.-The same. Dentition; $\times 8$ diameters.
Figure 18c.-The same. Side view of two of the teeth; $\times 22$ diameters.
Figure 18d.-The same. Gizzard, side view $; \times 2$ diameters.
Figure 19.-Fissurisepta evitmeta V., p. 204. Side view of the type-specimen; $\times S$ diameters.
Figure 19a.-The same. Posterior view of the apex ; $\times 22$ diameters.
Fignre 20.-Cocculinu leptalea V., p. 202. Side view of the largest specimen with the apex eroded $; \times 12$ diameters.
Figure 20a.-The same. Basal view of the shell containing the animal preserved in alcohol ; $\times 6$ diameters.
Figure 20b.-The same. Side view of a much younger specimen with the apex perfect; $\times 12$ diameters.
Figure 21.- Poromyu sublevis V., p. 221. Interior of the right valve ; $\times 2$ diameters.

Abt. VII.-New England Spiders of the family Epeiride. By J. H. Emerton.

On account of their bright colors and conspicuons webs, the Epeiride are better known than the other families of spiders and many of our species have been already described. 'The general works of Koch, 1831 to 1848, and Walckenaer, 1837 to 1847, contain descriptions of many American spiders, which camot however be identified with much certainty. The descriptions of Araneides of the United States by N. M. Hentz, published in the Jommal of the Boston Society of Natural History from 1842 to 1850, are largely of sonthern spiders. I have however ilentified twenty New England species with Hentz's descriptions. Since Hentz a few northern spirlers of this family have been described in the following papers.

Giebel: Illinois Spiders. Zertschrift fur Gesammen Naturwissenschaften, 1869.
J. Blackwall: Spiders from ('anada. Ann. and Mag. of Nat. Hist., vol. xvii, p. 77.
O. P. Cambridge: Newfoundland Spiders. Proc. Royal Phys. Soc. Edinh., 1881.
T. Thorell: Labrador Spiders collected by Packard. Proc. Boston Soc. of Nat. Hist.. vol. xvii, 1875.
T. Thorell: Bulletin of Hayden's U. S. Survey of the Territories. Spiders collected by lackard in Colorado, 1877.
E. Keyserling: Beschreibungen neuer und wenig bekamiter Arten Orbitelip. Sitzungsberichte der Tsis. Dresden, 1863.

Beiträge zur Kemutniss der Orbitelz Latr. Verhandlungen der Zool. Botan. Gesellschaft in Wien. 1865.

Neue Spinnen aus Amerika. Zool. Bot. Gesellschaft in Wien, 1879. 1880, 1881, 1882.
H C. Mctook: Epeira radiosa. Proc. Phil. Acad. Nat. Sci., 1881, p. 163.
Wehs of H. triaranea and other new species. Proc. Phil. Acad., 1876.
Webs of Epeiridx. Proc. Phil. Acad., 1881. p. 431 and 173; 187s, p. 124.
Benides these species described from American spiders, several of our common Epeiridæ are also found in Europe and have there long been known and described. In identifying these I have been much helped by European specimens determined for me by Messis. Thorell, Cambridge, Simon and Koch. In naming European species I have followed as closely as possible Thoreli's Synonyms of European Spiders, and have given the synonyms used by Simon, Blackwall and Menge.
trans. Cons. acad. Vol. Vt.
SEPT., 1884.

The spiders which I have examined are chiefly from the same Iocalities as the Theridide described in Trans. Comn. Acad., vol. vi, P1. 1 to 80, but owing to the greater ease of finding Epeirida, the common species have been taken at many more places and I have had much more help from other collectors. Besides my own collection I have examined those of Bowdoin College, Cornell University, Yale C'ollege, H. C. M. Cook of Philadelphia and Geo. Marx of Washington. I have also received specimens from .J. B. Tyrrell, Toronto, C'anada. From the Adirondacks and Rocky Monntains from F. A. Bowditeh of Boston. From the neighborhood of Boston from S. Henshaw, and from many other places and persons.

The Epeiridee are distingnished from other spiders by their rombl wels formed of radiating threads crossed by others which are covered when fresh with a sticky flaid that collects on them in drops. These webs and the way in which they are made have been often describel. The radiating lines are first spun and tightened by many irregular short cross lines at the center. Then a spiral line is begun passing around the center, at first with the whorls very close together, then suddenly widening it is continned to the ontside of the web, with the whorls as far apart as the spider can reach. The sticky spirals are then loggun at the ontside elose logether and as they cross the line of the first spiral, the latter is bitten away, leaving in the linished wel) only little thickened spots on the rays to show its comse. Pl. xt, fig. 1. 'Toward the center of the web the sticky spirals are usually a little closer until about the length of the spideres longest legs from the center, where they stop, leaving a ring withont cross lines aromm the closer part of the first spiral. When the weh, is finished the spider is thus left in the center where it can hold itself withont interfering with the sticky threads until something is canght.

The Epeivila usmally have the abromen large, short amd thick, so that they walk awkwarlly on a that surface, their natural position being hack downward holding to the web by their feet.

The cephalothorax is usually witle and the head low with the eyes aromal the from, not over the back as in some families. The lateral eyes are usatlly vary close together, and separated far from the middle pairs.

The mouth parts are short and stont, exeept in Tetragnatha, the maxille and labimm rombed at the tips. Pl. xa, fig. 6.
'The markings of the abdomen msually form, as in some 'Therididae, a wide scolloped stripe which has been called the "folimm," usually bordered by a dark and light stripe and enclosing one or more pairs
of spots on each segment; those of the two front segments being usually larger and brighter than the others. These markings ean be seen on the figntes on Plates xxxin and xxxiv.
like Theridide the Epeiridse have three claws on the feet and, moder the elaws, stiff toothed hairs. The middle rlaw is shorter than the others and has two or three short teeth. The lateral elaws have more and larger teeth varying in different indivithats, on different feet and according to the species. The imner clatw also differs from the onter as shown on Pl. xı, figs. 3, 4, 5. The toothed spines have also a definite number and arrangement.

The spimerets are short and closed together when not in use so that the middle pair are concealed. Between the front pair of spinnerets is a short process covered with hairs but without spinning tubes.

The males are smaller than the females and have a smaller abolomen and longer legs some of which are often thickened or otherwise modified in shape. The difference between the sexes is greatest in the gems Argiope, in which the females become very large about the time for laying eggs.

The copulating orgaus are described in the following descriptions of the two suld-families.

The genera lloborus and Ihyptiotes, which have heen placed in this family by Thorell and others on aceomet of the resemblance of their webs to those of Epeirida, seem to me to belong more properly with the Ciniflonidat with which they agree in having the calamistrum and cribellom and in the structure of the arlhesive thread by which their webs are erossed. This chassification is followed by Simon i! Arachides de France and by Bertkan in Archiv fur Naturgeschichte, 1882. Leaving out these I divide the family into the two following sub-families,

Epeirinæ.

This group includes all the family excepu Tetionfothu and Pachiggruthr. They are generally short and stont spiders with the abdomen round and planly marked. The hear is low and wide. The maxilla and labium are short and rounded. The mandibles are short and stout. The male palpi are large without a movable hook on the tarsi. The palpal organs are generally rounded and have a short tube but long terminal hook and other appendages. The epigynum raries greatly in different genera but always has extermal hard parts.

The following genera belong in this sub-family. Lepeira, Singu, Zilla, Micropeira, C'yclosa, Acrosoma, 'yrtarachme, Argiope, Argyroepeira.

Tetragnathinæ.

These differ considerably from the other Epeirids. The maxillse and labinm are shaped at the end as in the Epeirina but are much longer. The mambibles, especially in the males, are very long and toothed on the imer edge. 'The eyes are on the front of the head in two rows, the lateral pairs not so distinctly separated from the others as in Epeirine. The epigynum is internal, consisting only of a ponch with simple spermathece. I'l. xt, fig. 7. The palpal organs are not enclosed by the tarsus and the tarsus has a long movable hook jointed to its base. Pl. xl, figs. 5 and 6 . The colors are light, usually yellowish with gray markings and silvery spots and bands. Genera Tetra!mutha, Pachy!natha.

Epeira.

In Epeira the front of the head is low and the lateral eyes are much farther from the middle ones than these are from each other. The abdomen is usually romd, or short oval, sometimes widened and thickened a little at the front end with two hmmps or homs on the back. The epigynum is covered by a hook or finger which is sometimes narrow and solt and placed between two elevations, and sometimes wide enongh to cover all the other parts as in E. domicili. orum and trivittatu. The males are always somewhat smaller than the females and have longer legs, the second pair of which are often thickened or curved. The palpal organs are large and have a short tube with a large terminal hook and large hard processes at the base. The tarsus has a short curved spmat the base. The tibia and patella of the male palpi are msmally short.

Epeira nordmami, cinerea, silvatica, angulata, solitaria and corticaria.
All these spiders have two slight humps on the front of the abtomen, which is a little wider and thicker in front than in other species. The colors are generally dark. Most of the spiders grow to a large size and are generally fomd in woods of large trees. Silvatica, angulute and solituria resemble each other closely and may be mistaken one for the other. In anyulutu the sternum has a yellow midde stripe and the ablomen yellow spots between the spimerets and cpigymm. Th siluticu the stermm is brown and the abdomen brown beneath with only indistinet markings. The male angulata has a large spine on the coxas of the seconel legs, while in silvatict this spine is very small. The entarged tibia of the second legs in the mate angulate is nearly as long as tibia of the first legs. In siluatira the second thbia is more slender and much shorter that the tibia of the first pair. The folimm of siluatica has a row of oblique black markings along the edge on each side, while in angulatu it is evenly notehed. The mate solituriu is much larger than the other species. It has the spines on the second coxat very large and smaller ones on the first coxit. The under side of the abdomen and sternmm are black and the folimm indistinct. E. corticaria may be mis-

Epeira angulata (Clerck. 1757) Thor., Blk., Menge.
Plate XXXIII, figeres 12, 12 a. Plate XXXV, figidre 2.
The adult female is 16^{mm} long. The colors are brighter than in siluatica. The dark brown rings on the legs are darker and more distinct. The sternmm has a bright yellow line in the middle. The nuder side of the abdomen is black. Between the epigynum and spimerets are several irregular yellow spots as in some specimens of the European angulata. The abdomen is nearly as wide as long with two large hmmps on the first segment. The front of the abdomen, including the front half of the hmmps, is dark brown except a bright yellow mark in the middle and a few small light spots. The rest of the back of the abdomen is lighter. The folimm is dark brown at the sides and deeply scolloped. The edge is marked by a dark and light line which is not broken into short black lines as in silvatica. Pl. xxxir, fig. 12, 12 a.

The males are colored in the same way. The tibia of the second legs is thickened and the metatarsus curved. The coxa of the second pair has a conical spine near the base.

The epigynum is small but the finger is thicker than in siteatica. The palpal organs are large with the terminal hook short and sharp, shorter than in silvatica. Pl. xxxy, fig. 2.

Two males were found in woods on Mt. Tom, Holyoke, Mass, near a large web across a path. The females conld not be found. A female was found in a large web eight feet from the ground bet ween two trees six feet apart in Beverly, Mass.

Adult q from Illinois, Knox Co., Cornell Univ. Collection.

Epeira solitaria, new.

Plate Xixifi, figure 1i, Plate XXity, figure 3.
This large spider, of which I have ouly seen one male, is 14^{mm} long with the front legs $28^{m m}$. The general appearance is like that of the male angulatu. The conical spines on the second coxie are very large and there are smaller ones on the first coxe. The palpal organ has a very long black terminal hook. M. xxxv, fig. 3. 'The sternm, the coxa and the nuder side of the ablomen are black. The cephalo-

[^7]thorax is dark brown. The usual yellow spot on the first segment of the abdomen is large and bright. 'There are two hmmps as in ominnlatu. 'The folimm is black with a few yellow sponts and the side areas are covered with irregular spots of back and yellow. The legs and palpi are marked as in the male angulate but the femora are darker. The tibia of the second pair is enlarged as in the allied species.

This spider was fomd on the fence of the reservoir below Spring pond in Peabody, Mass., Sept. 20, 1869.

Epeira corticaria, new.

Plate XXXili, figire 14. Plate XXXV, figitre 9.

This little spider may easily be mistaken for the young of angulata. It is 6^{mm} long, light reddish brown, in color with lighter dall yellow markings. The cephalothorax has a wide middle dark stripe divided in front behind the cyes. It is also rlark on the elges. The legs are dull yellow, with wide brown rings at the end aml midelle of each joint. The abdomen is widest at the first segment and has there two horns. The front of the abdomen is dark reddish brown with light spots in the midnle and a light line along the hinder edge from one horn to the other. Behind this dark area the abdomen is lighter and covered with tine spots. The folimm is distinct but not very dark and has oblique dark brown lines along the edges like siluation. The stermm is dark brown. The epigymmo is large and has a thick finger widened near the base. In three out of form of my pecimens the finger is broken of.

Beverly, Mass., and Mirondack Mts., N. Y.
Epeira silvatica, new.
Plate NXXIII, figurlis $13,13 a$. Plate NXXV, figures $1,4,5,6$.
Length of female from Buverly, 16^{mml}; first leg, 23^{mm}.
The abdomen is nearly as wide as long and has on the first segment two prominent hmps. The ecphatothoras is dark brown with indistinct darker lines in the midlle and on each side. The legs are brown with dark rings at the ends of the joints and less distinet ones in the midlle. 'The atidomen' has a hright yellow spot on the front, behind which is a median row of smaller light spots. The greater patt of the abdomen is of a light brown color. The front aromed the yellow spot is darker and so is the folimm which is marked on the edges by five pairs of oblique black lines sumommed by a lighter border. The under side of the ablomen is dark brown without markings in the adnlt female but young females and males have two
distinct yellow spots in the middle and two smaller ones near the breathing holes. The epigynum is smatl for so large a spider. The finger is long and slender as in angulata. Young specimens apparently of the same species are more distinctly marked. They have the dark markings on the middle and sides of the head much plainer than the adnlts and the yellow spots under the abdomen.
'The male is about half as large as the female. (The largest, one from Beverly, is $10^{\mathrm{mm}} \operatorname{long}$, 1 st $\operatorname{leg} 21^{\mathrm{mm}}$) with the front legs proportionately much longer. The tibix of the second pair are thickened and have the spines larger and more numerous than in the female. The coxa of the second pair has a short conical point near its base and the coxa of the first pair a book on the under side near the outer edge. These modifications of the front coxe are fomm in several species. The colors are similar to those of the female. The dark rings near the ends of the joints of the legs do not extend quite to the end, the joint having a lighter tip. The folium is more regular than in the female and the humps are absent. The stermm is black. The under side of the abdomen has four yellow spots more or less united at the sides.

Beverly, Mass., E. Burgess; Mt. Jefferson, N. Il.; Chateangay Lake, Adirondack Mts., N. Y., from F'. A. Bowditch; Ithaca, N. Y., Cornell Univ. Collection.

Epeira nordmanni Thorell. Syuouym of European Spiders.
Plate XXXII , figures $6,6 u, 6 l$.
Female, 11^{mm} long ; first leg, 18^{mm}.
The colors are white and gray or black. The cephalothoras is gray, in atcohol yellow, darkest toward the sides. The legs have a dark ring at the end and a less distinct one in the middle of each joint. The sternmm is light brown or black. The abdomen is narrower than that of cumuluta, lut has two hmmps on the first segment like that species. The folimm is narrow and truncated in front in line with the second pair of muscular spots. The edges of the folinm are marked with five pairs of very black lines converging backwand. The light stripes at the sides of the folimo are wide and the lateral dark markings sharply defined. In front there is a central white mark, on each side of which are dark areas that extend loack so far as to cover half of the hmmps and enclose a large spot between them. In some specimens the folinm and other dark markings are nearly uniform black with sharply marked edges and with some white spots in the center. In one female from Western New York apparently
of this species the dorsal markings are very obscure, and the light areas of a reddish color like old specimens of Epeiratrivitutu. The ventral markings are as distinct as usual. The under side of the abilomen has a midlle dark area from the stermum to the spinnerets. In this area are four yellow spots, two just behind the respiratory openings and two farther back. In some these spots are comnected by the light stripe along the sides of the dark area. The finger of the epigynmm is widened at the hase somewhat as in corticuriu.

I have adnlt females from Quohang Bay, 20 miles east of Portland, Me., where they were abmulant on low bushes in September, and young from Eastport, Me., and the White Mts. Huntington, Mass., young ; Philadelphis, I. C. McCook; Western New York, E. P. Vin Duzee. I have compared specimens from Norway from 'Thorell's collection.

Epeira cinerea, new.

Plate XXXIII, figure 10. Plate XXXV, flgures 7, 8.
Female 18^{mm} long ; cephalothorax, 6.5^{mm}; first leg, 26^{mm}.
The color is dirty white with grayish markings. Long white hairs are scattered all over the borly. The cephalothorax is a little darker at the sides. The legs have gray rings at the end and middle of each joint which are hardly visible in very light individuals and nearly black in dark ones. The abdomen has two slight humps on the first segment. The folinm and other markings are like those of anguluta and allied species hat very pale and indistinct. The stermum is dark brown. 'The under site of the abdomen has a central dark stripe bordered hy light yellow eurved markings. The epigynmm is small and has a wide finger turned up at the end, behind which is a slight hollow.

The male has the same colors and markings as the female. The tibise of the second pair of legs are not thickened.

This spider is common abont barns and fences in Maine. Mr. Howard of New Haven, found it very abomdant at lyton, Mane, near Umbagog lake. I have it also from Bethel, Me., Gorham, N. H., and Ausiable chasm, northern New York. I have never seen it in other parts of New kngland nor farther south, except from Garter Comnty, Kentucky, where it was collected by F. G. Sanborn for the Kentucky Geological Survey.

[^8]
Epeira sclopetaria (Clerek) Thorell, Menge.

E. sericutu Blk.

Plate IXXifi, figure 4. Plate NXXT, figure 10.
Large female, from Nalem, 15^{mm} long; 1st leg, of $4^{m \mathrm{~m}}$. Arerage female, Essex Bridgs, Salem, 11^{mm} long; 1st leg, 18^{mm}.

The whole hody is covered with light gray hairs which olverure the color and markings of the skin. When wet in aloohol the dark markings appear dark brown, and the lighter parts dull yellow. The cephalothorax is dark brown or gray withont markings. The legs are marked with light and dark rings. The femm has the inner half light and the onter half dark. The patella is darkest toward the tip. The tibia and the metatarsus are dark at both ends and have a dark ring near the middle. The sternom is dark brown with a romdish light spot in the middle and the coxie light. The top of the abdomen is dnll yellow with dark brown or black markings. The folimm has a distinct dark and light line around the scolloped edges, hroken on each side between the first and second segments. These breaks are usually distinct and distingnish this spider from patogiuta, strix and other related species in which the edge of the folimm is nsmally entire. The metian dark spot at the front of the abdomen is large and plain in this species and is followed by a line

Epeira in Europe aud America. It lives in barns and windows of honses ant on fences, and between the timbers of wharves and bridges, but is rarely found ou plants or away from houses. Ep. putagiuta is occasionally found about houses in the same way in both comtries and also on plants. It appears to he a northern species and is not foumd, as far as I know, south of New England nor in southeru Comecticut. Ep . stric is an American species usually found on plants but sometimes about houses like sclopeturiu. The colors and markings of these three species are usually distinctive, but occasional individuals of sclopetaria and patagiatu resemble each other very losely. In sclopetaria the colors are gray inclining to yellow. The edges of the folinm are broken on the first segment, which is not the case in the other species. The colors of E.patagiata incline to red, especially in alcohol. The abdomen is usually flatter than in sclopetaria and the folium wide and mbroken at the ciges. In strix the colors are more as in sclopetario, the abdomen very oval, the folimm narrow and the sides of the abdomen much lighter colored. The legs of sclopeturia are the longest and those of strix shortest. The males can be easily distinguished by their palpi. In sclopetaria the fork at the base of the palpal organ is slender and the terminal hook long and blunt. In strix the fork is also slender, the outer tooth longer than in sclopetoria and the terminal hook is stouter but with a sharp point. The fork in putagiuta is short and twice as thick as in the other species, both tecth moned up at the ends, and the terminal hook is long like sclopetaria but pointed at the tip. The finger of the epigynm of patagiatu is Hat and widened at the tip. while in sclopeturia and strix it is round as usual.

Trans. Conn. Acad., Vol. VI.
of smaller median triangular spots. The dark portions of the folimm on the first segment are distinctly separated from the rest by the gaps in the edges of the folinm and a light area extending back to the second pair of muscular spots. The dark areas at the sides of the folimm on the hinfer segments are broken by lighter transverse stripes on each segment. Beneath the abdomen are the usual smicircular lright yellow markings, partly enelosing a dark spot which extends back to the spinnerets. Very dark individuals have the dark markings of the abdomen black and the lighter marks bright white, and very light individuals have all the markings light yellowish brown and indistinct. This is the most common Epeira about barns and fences and especially on wharves and bridges, lout is seldom fomd on plants aml never far from honses. It seems to be common all over the comntry, and equally so in Enrope. It makes its web nsually toward evening and remains in it doring the night, but in the daytime hides in some crack near by where it makes a slight shelter of silk. It sometimes liolds a threat leading to the center of the weh. Adults are fomd at all seasons but most abmantly in the summer. I have seen the cocoons in June.

The male differs from the female chiefly in greater length of the front legs and smaller size of the abdomen. The palpi are short. The tarsms has a slight noteh at the base behime which a bhont process toms up toward the end of the palpus. The palpal organ is twisted together and partly enclosed in the tarsus. The tolse is very short ind simple, near the middle of the palpal organ muder the ends of the other appendages. The largest of these is a hard forked process near the base of the bulb. Beyond this and near the tube is a thin, flat appendage, and at the end of the organ beyond the tube is a large hook with a shorter ronghened process at it: loase.

The eprgynm has two hard prominences between which is a flexible, finger-like appentage. In selopetaria and strid this finger is narrow and nsually turned up at the end. In patrofiutu the finger is wide and tlat, and dark colored at the end.

Under the name of Eineira mulgaris, Ilentz probably inchuted this and other allied species. The picture from which his figure of E. vulgaris is ngriaved may be from this species, but quite as likely from some southem spider not described here.

Epeira patagiata (Clerck) Thor., Blk., Menge.
Ep, formosa Keys., Zool. Botan. ('esellsch., Wien. 1865.
Ep. Wilteris Camb., from Newfoundland, Proc. Roy. Plys. Soc., Ediuburgh, 1881
Plite NXXiti, figures $3,3 a, 3 b, 3 c$. Plate XNivy, figule 11.
Female, from Salem, $9^{\mathrm{mm}} \mathrm{long} ; 1 \mathrm{st}$ leg, 15^{mm}. Female, from Mt. W^{+}ashington, 11^{mm}; 1st leg, 14^{mm}. Female, from Beverly, $10^{\text {mu }}$ long ; 1st leg, 15^{mm}.

This spider is slightly smaller than solopeterion and like that species varies greatly in size and the length of the legs. The abdomen is nearly romul, as in selopeteria, but slightly flatter on the haek. 'The eolors are lighter than those of sclopeterice and the light markings have a reddish color, especially in alcohol, in place of the dull yellow of sclopetaria. The cephalothorax is light brownish yellow with light hairs. The legs are ringed with dark and light, as in schopetaric, but the dark parts are brighter reddish brown. The abiomen is marked with varions shates of brown. The folimm has the edges plainly marked and not broken on the second segment as in selopeturia. The color of the folimm is usually broken by lighter transverse bands and spots. The light bands on the second segment are often very large and mited with the light markings on the first segment while behind they are separated by a sharp line from the darker part of the folimm. Some dark speemens have the folium of a uniform dark brown eolor, broken only by irregular small light spots. Figs. 3, 3a, 3b, $3 c$.

This species is abundant in the White Mountains and the Adirondacks where it lives on plants away from houses. In Montreal, C'anala; Albany, New York; Eastport and Portland, Me.; Ithaca, N. Y., Cormell University Collection; and in eastern Massachuset ts it is a common house and fenee spider, and is also fomm on bushes. I have not found it in several seasons' collecting at New Haven, Comn, nor on Cape Cod and Martha's Vineyard, mor is it among a large lot of house Épeiru from Noank, Com. Mr. McCook, in Philadelphis, and Mr. Mare, of Washington, have not found it in their sonthern collecting, so that it is probably not common south of Massachusetts and New York. It is a common European species.

Epeira strix Hentz.

Ep. upoclisu Giebel, Illinois spiders, Zeitschrift fur Gesammen Naturwiss., 1869. Probrably E. uffinis Blk., from Canada. Ann. and Mag. of Nat. Hist., vol, xvii.

$$
\text { Plate XXXili, figure 5. Plate J̌XV, flgure } 12 .
$$

$10^{\mathrm{mm}} \operatorname{long} ; 1$ st leg, 14^{mm}.
This species usually differs considerably in its general appearance
from putarfata and sclopetaria. It resembles the lighter individuals of selopeterice in color, but diflers in form. 'The ablomen is longer and the legs shorter and stouter and the whole body is less bairy. The cephalothorax is reddish brown with a dark stripe each side and a less distinct one in the middle. The legs are light brownish yellow with a dark ring at the end of each joint. The sides of the abotomen are light. The folinm is not much wider in from than behime, and seddom has larger spots or other irregular markings at the front end. 'The folimm is dark brown with a light stripe along the middle, in which is a darker lime indistinet except at the forward end.

This species is found from Massachusetts to Maryland. It lives occasionally with sclopetaria abont honses, bridges and fences but. more commonly on low bushes. In the daytime it seldom lives in its web nor does it hide in a nest near it, but oftener goes down to the ground or to a clistant part of the plant. It is often found umder stones. It becomes adiult late in the summer. Young are found under leaves during the winter. I once saw the process of laying the eggs and making the cocoon by this species. The spider first mate a bunch of loose silk under which it held itself and forced the eggs mown into the mildle of it. The eggs were soft and adliered together and to the silk enough to stay in place while the spider spun silk over them till they were entirely concealed.

The male differs but little from the female, less than in the two related species.

Epeira trifolium Hentz.
I'late XXXili, figures $8,8 u, 8 b$. Plate XXXV, fifures $13,14,21,22$.
Large female from sialem, Mass, $18^{\text {num }}$ long; first leg, $27^{m m}$. Arerage female from Salem, Mass., $13^{\text {mm }}$ long; first leg $18^{\text {mm }}$.

The eolors of the female are very variable, some having the abdomen dark reddish brown, sometimes with a purplish tinge amd others various shades of gray to almost white without any markings on the abdomen. White specimens kept in continement have changed in a few days to the usual reddish hrown. The nsual markings on the abdomen are four white spots near the four muscular pits, a median row of white spots and several irregnlar transerse rows, all trace of the edses of the folinm being absent except in young individnals. The mader side of the abdomen is dark brown even in light colored individuals, and the semicirenlar bright yellow marks are absent exeept in the young where they sometimes show. The eephatothorax
is white with three wide dink brown lines. The legs are white with a dark brown ring at the end of each joint and in the middle of the fourth femur. The sternum is dark brown with sometimes a light stripe in the middle.

The male is not more than 6 or 7^{mm} long, and light colored. The markings are similar to those of the female but all fainter or indistinet. The legs are long, and the spines long and black. The tibiae of the second legs are not morlified as in some species. The palpal organ of the male is small with a short, stont terminal hook and a small basal process with a long black curved tooth.

The males are found in August and September and the females get their full size and lay eggs in October.

They live on bushes, oftenest on small alders around the borders of open, wet ground. They seldom stand in the web in the daytime but ocenpy a tent male of two or three living leaves drawn together and lined with silk. The spider holds a thread leading to the center of the web.

Hentz's E. obesa and E. curreole are probably light individnals of this species, and E. septima may be an old female of large size with the colors faded and abdomen shmoken after laying her egrgs. I have seen a few in this condition, in which the light markings were all browner and the dark markings paler than in younger spiders.

The resemblance between the females of this species and the European E. quactrutu is very close. Usually the abdomen of trifolium is ronnder, the white markings smaller, and the edges of the folimn less distinct than in quactruta. The finger of the epigynum of trifolium is not widened at the base but is of about the same size from base to tip. The finger of the epigymum of quadrata is wide at the base and tapers towarl the tip. Plate xxxy, figs. 19, 20, 21, 22.

The male of trifoliom is much smaller than that of quadruta. The tibia of the scond legs is not thickened. The palpi are not more than half as large and the process at the base of the palpal organ is small as in most species, while in quatrata it is very large, nearly as long as the rest of the palpal organ. Plate 3 , fig. 15.

Canada, New England, New York and southward.
Epeira marmorea (Clerck) Thor.
Plate NXiJit, figure 2. Plate Mxiv. figure 17.
Female 10 or $12^{m m}$ long; first leg $15^{\text {man }}$. The cephalothorax is dull yellow with indistinct darker lines in the middle and at the sides. The femur of each leg is yellow or oftener bright orange with a
darker ring at the end and sometimes around the midelle. The patella is the same color darker toward the tip. The other joints are white with orange or dark brown rings at the end. The stermm is dark hrown, ravely with an indistinct light mark in the middle. The abdomen is marked on the batek with a folimn extending its whole length or with the front portion indistinct or absent in very light specimens. The light parts are white, yellow or oceasionally orange, the dark parts gray or light brown. The two light spots near the musenlar marks on the first segment and the median stripe form a cross-shaped marking in the front of the abdomen. The spots on the other segments decrease in size backward. The edges of the folimm are dark with a narrow light line ontside. The sides of the abdomen are marked with obligue dark stripes not sharply separated from the lighter spaces between. The under side of the abolomen hats the usual dark area in the middle with a semicirenlar yellow marking each site of it. I have never found any marked like E : myromidate of Europe, which is smpposed to be a variety of marmorea.

A male from Beverly, Mass., measures $8^{m m} \operatorname{long} ;$ first legr 16^{mm}. A larger male from Mt. 'Tom, Mass., is $10^{m m n}$ long ; first leg 18^{mm}. The only European specimen that I have is $8^{m m}$ long. The colors and markings are like those of the female. The tibiae of the second legs are moch enlarged and the spines on the imere side are short and stont. The coxa of the secont pair have a long conical spine near the base. The palpal organ is large and dark colored. At the base of the bull, there is the nsual process with a blunt tooth at the onter corner, and a short sharp one just moler the end of the tube and terminal hook. The terminal hook is not so darkly colored as the other appendages. It is long enough to cover the whole width of the organ. The tulse is short and ean be distinguished by its dark color maler the end of the terminal hook. The tube has al large that process near the $t i p$ which camot be easily seen without pressing the appenilages apart.

In Beverly, Mass., this species is as common as insularis and lives in the stme phaces on bushes near meatows. From the woods on Mt. 'Tom, Holyoke, Mass., I have two adnlt males and several immature females taken in July, 187:; all very large speeimens and very pale, shewing hadly any trace of the folinn or the rings on the legs. I have it also from Eastport, Me., and western Massachusetts. A male and lemale from Chateagay lake, Adirondack Mts., firom F'. A. Bowditeh'; Camada, J. B. 'Tymell.

Epeira insularis Hentz.

E. ammlipes Cibibel, Illinois spiders, Zeitschrift fur Gesammten Naturwissenschaften, 1869.

```
Plate IXXiti. flgure 1. I'late NXXV, figure 18.
```

The females are usnally larger and the males smatler than in mormorea. The largest female I have spen, a lwight orange one from New Haven, C'om., measured $19^{\text {nmm }}$ long; first leg $24^{\text {mun }}$. One of the nsual size measured 13^{mm} long; first leg $17^{m \mathrm{~mm}}$. The cephalothorax is dull yellow with slightly darker lines in the midde and at the sides as in mamorea. The femur and patella of all the legs are lright orange, darker toward the ends with sometimes a darker ring in the mildle of the femur. The other joints are white with brown ends as in marmorea. The sternum is light brown on the edges and bright yellow in the middle. The light markings of the abdomen are bright yellow or oceasionally deep orange. The dark markings are dark brown or purplish. The markings are all sharply defined. The folimm is deeply scolloped and bordered ly a wide yellow line, ontside of which is a row of irregular yellow spots. The spots inside the folimn are in the same positions as in mamored but are much larger. The wider side of the ablomen is marked as in marmorea.

The males are $7^{m \mathrm{~mm}} \operatorname{long}$, first leg $13^{m \mathrm{~mm}}$ and marked like the females. The dark stripes on the eephatothorax and the rings on the legs are plainer than on the female. The coxie of the second legs have only a slight lump in flace of the spine. The tibia of the second pair are enlarged and spiny as in mumored.

This species is more common in Massachusetts and Comnecticut than marmorere. It lives with trifolizm on high bushes three or fonr feet from the gromid, nsually near water. It makes a tent moder which it is nsually found holding a thread leading from the center of the wel. The males are found near the tents of the females in Angust and September. This species was fomd by Hentz in Alabama.

Epeira thaddeus Hentz.
Plate SXXIII, figure 9.
This species may readily be mistaken for young insulteris. It is 7^{mm} long, with a wide, romd, white or yellow abdomen, with two dark stripes extending from near the middle of the front around the sides under the abdomen nearly to the spimerets. Under the abilomen there is a light spot just lack of the epigynum surromided by a large dark area which extends back nearly to the spinnerets. The epigy-
num is very small and light colored. On some specimens there are indistinct spots and other traces of the folimm toward the end of the abdomen. The cephalothorax is yellow with sometimes dark apots at the sides. The two frout pairs of legs have the femmr, patella and tilia orange, darker at the ends. The tarsi are white with brown tips. The other legs have the femur and patella orange and the other joints white with dark rings at the ends. The tibia of the fourth pair has a wide lark ring at the tip.
These spiders live in tents near the wel, like mamorea and insularis, and are often fomd on fences. Aromid New Haven, Comn, they are common, and I have them from several places in Eastern Massachnsetts. Hent\%'s original panting had the colors much brighter than any specimen I have seen.

Epeira pratensis ITentz.

Plate XXXIH, fleures $15,15 a$. Plate JXXVI, figire 9.
Adult females from (helsea marshes, Mass., are $8^{\text {mum }}$ long. The cephalothorax and abdomen are both rather longer and narrower than in trivittatr. The colors are yellow and yellowish brown with, in some specimens, bright red marks on the edges of the middle stripe. The cephalothorax is dull yellow with a middle and two lateral stripes slightly darker but these are often absent in light specimens. The legs are dull yellow, slightly darker at the ends of the joints. The abdomen has a middle dark stripe, at the sides of which are two narrow bright yellow lines which are sometimes bordered with red near the front of the abdomen. Ontside of the middle stripes are six pairs of black spots partly surrombled by yellow which are the only traces of the elges of the folium. The

Epeiru prutensis, trivittatu and domicilionum.

These three species resemble each other elosely and some individuals of either species may be mistaken for one of the others. They resemble each other most in antumn when the colors of all three are darker and the markings more obseure. The palpal organs are so much alike that they give no lelp in distinguishing the speeies. Females of domicilionum are larger than the other species and early in the summer eam usually be distinguished by their markings. The males of this speeies differ from those of tricittata in having the thitia of the second legs a little less emred and in darker colors. The markings of females of trivitutu and prutensis are often moneh alike, but pratensis las generally a longer ablomen ant less tistinet folimm than trivittuta. I'he males of protensis have the cephatothorax longer and the head more prominent than in the other species. Trivittater is the most common of the three species and the most variable. Domiciliorum is most common on fences and is gardens.
colors grow darker with age, and in September and October old females are sometimes found of a dark reddish brown color with hardly a trace of the summer markings. The sternum is brown with a yellow stripe in the middle. The under side of the abdomen has a dark area with two yellow cnrved marks which may be broken into four spots. There are also two yellow spots each side of the spinnerets. The external part of the epigynum is a large hook flattened at the end. The single opening is directed backward under the hook. The male has the spots on the abdomen plainer than the female. The femur of the second leg is thicker than the others and the tibia is somewhat thickened and curved and has short and stout spines on the inner side. The palpal organ is small and simple. Plate xxxvi, figure 9.

This is found in many places in Eastern Massachusetts, but not as commonly as domicilionum. It is very abundant on grass on the Chelsea salt marshes in company with trivittata, where it becomes adult in the latter part of July.

Epeira trivittata Keyserling. Sitzungsberichte der Isis, Dresden, 1863.
Plate XiXilif, figures 16, 16a. Plite XXXVi, figures 2, 3, 5, 8.
This is one of the most common spiders in New England. It lives usnally in grass and low bushes, but seldom on trees or fences. It varies much in size, the large females measuring about 7^{mm} long, and the first leg 12^{mm}. Adults however oceur not more than half as large. The color is light yellow with brownish rings on the legs at the end of each joint and three indistinct dark stripes on the cephalothorax. The back of the abdomen has a row of light spots in the middle sometimes nearly united into a stripe. Four light spots on the front of the abdomen are more or less connected with the middle row. The edge of the folium is marked by rows of dark brown spots partly surromded with yellow, and between these and the middle spots the folium is dark brown. The sternum is bright yellow in the middle and the under side of the abdomen is marked as in domiciliomm with a dark center and four or six yellow spots. The epigymum is covered by a strong hook, with the opening under it directed backward.

The males resemble the females in color and markings. On the under side of each femur is a single row of long spines. The tibia of the second pair is strongly curved, Plate xxivi, fig. 2, and has strong spines on the inner side, those near the base being much longer than the others. The palpal organs of trinituta, pratensis and domicili-
orum are much alike. The tube and all the appendages are small and crowded together near the end of the organ. The plainest difference between this and the male domiciliorm is in the shape of the tibia of the secoml pair of legs. Plate xxxvi, figs. 1, 2.

This species seems to mature earlier in the summer than domiciliorum, adults of both sexes being abundant from June to August. In open places and espeeially toward the latter part of the summer the colors become darker and it resembles the next species.

White Mountains; Massachusetts; Comecticnt and sonthward.
Epeira domiciliorum Hentz.
Probably E. Hentzii Keys., Sitzungsberichte der Isis, Dresden, 1863.
Plate XXXIII, figure 17. Plate XXXVI, figures $1,4$.
This species is larger than trivittuta and measures 10 to 12 mm in length, and the first legs 15 to 20^{mm}. The cephalothorax has three dark stripes more distinct than in trivittuta. The femora are orange red and the other joints light yellow with wide dark hrown rings at the ends and middle of each joint. The abdomen has a straight light stripe along the middle of the baek from which a pair of less distinct bramehes extend at right angles on each segment as far as the edges of the folium. In the end of each of these light branches is a hack spot and between them dark brown areas which become lighter toward the sides where they divide into fainter branches. In the antumn the colors beeome darker and in some individuals the light markings are hardly visible and oceasionally the back is almost white with the brown marks on the sides very faint. The sternmm is black with a bright yellow middle stripe. The under side of the abdomen is back in the middle, with four luright yellow spots and two fainter ones near the spimerets. The epigynmm is covered by a large hook with the opening on its under side, as in trivittata.

The male is marked like the female with the dark markings usually more distinct. The palpi are like those of trivittuta. The plainest difference between this and trivittuta is in the shape of the tibia of the second pair of legs. In trivittuta this joint is strongly curved outward, while in domicilionem it is nearly straight. In domiciliorrm the thick spines on the inner side are nearly all of the same size, while in trivittuta the spines near the basal end are much longer than the others. Pl. xxxvi, figs. 1 and 2 .

This spider inhabits fences and plants in gardens much more commonly than trivittetet and is also found in open woods on low trees, but seldom in grass. Massachusetts and Connectient and sonthward.

Epeira displicata Hentz.

Plate XXXIV, figure 4. Plate XXXVI, figure 20.
Full grown females are sometimes 7 or 8^{mm} long, but usually smaller. The cephalothorax and legs are brownish yellow. The abdomen is light yellow or crimson. The latter color is more common in young individnals and becomes brighter in alcohol. Sometimes there are two white lines in the middle. At the sides of the hinder half of the abdomen are three pairs of romd black spots sur. rounded by lighter rings. The under side of the abdomen is colored like the upper with no distinct markings. The stermum is yellow like the legs. The legs have no dark rings but are darker toward the ends and in some individuals, especially males, on the ends of the joints. The epigynum is small and dark colored with a small and slender finger.

The male has the legs and cephalothorax darker brown than the female and the black spots on the abdomen larger and snrrounded more distinctly with white which sometimes forms a stripe on each side. Each femur has a single row of spines on the under side. 'the tibiae of the second legs are not thickened. The palpal organs are dark colored. 'The double terminal hook is long' and the other appendages are stout and hard.

This is a common species from the White Mountains to Connecticut and southward. It is often found on fences without any web. The web is usually small, among the leaves of plants.

Epeira juniperi, new.
Plate XXXIV, figure 6. Plate XXXVI, figures 14, $15,16$.
Length of female 5.5 mm . 'The abdomen is nearty as broad as long, bright green with three white longitudinal stripes ou the back. The cephalothorax and legs are light yellowish brown, without dark rings. The male has the same colors, is slightly smaller and has longer legs. The epigynum has a short wide finger curved toward one side and widened at the end, which lies between the dark brown openings.

The palpal organ has a long pointed basal hook and a short dark colored temminal hook under which is the curved black tube. At the side is a large white process with a tooth on the onter side.

A male and female from a spruce tree on Peak's Island near Portland, Me., July 13, one from Wood's IIoll, Mass., in Angust.

Epeira alboventris, new.

Plate XXXiV, figure 5. Plate XXXYi, figure 12.

Length $4^{\text {mm }}$. Abdomen as broad as long, widest in front. The whole body is white except a triangular purple spot on the back of the abdomen. The hairs on the legs are long and white. The spines are light brown. The eyes are colorless but have some dark color around them. The epigynum is light brown and lias a short white finger broad and rounded at the end. Plate xxxyt, figure 12. A spider from Western New York, perhaps of this species, has the whole upper side of the abdomen veined with light red and eight darker red spots along the sides.

One from Peabody, Mass., near Ship rock, one from the north of Maine from F. W. Putnam.

Epeira labyrinthea Hentz.

Plate XXXiv, figure 8. Plate XXXYi, figure 11.

Female about 5^{mm} long. The cephalothorax is much longer that wide, dark brown except a white spot around the eyes and several smaller spots along the sides. The legs are white with narrow dark brown rings at the ends of the joints and wider rings of a lighter yellowish brown on the ends of the femora, tibie and the patello of the first two pairs. There is a small black spot around the base of each spine on the legs of the first two pairs. The abdomen is whitish marked by a distinet black or dark brown folium on the hinder half and including four white spots on the first and second segments, which are more or less connected with each other toward the middle. The mandibles and maxilla are dark brown. The steruum is dark brown with a white middle stripe. The under side of the abdomen is dark brown with a middle white stripe and indistinet light spots along the edges of the dark area. The male is much like the female but with longer legs and smaller body as usual.

Besides the usual round web, this species makes on one side and above it an irregular weh like that of Theridium in which is a deep tent with the opening directed toward the center of the round web with which it is connected by a thread. In the antumn the eggs are laid in several flat cocoons which are fastened near the top of the tent, and partly concealed by pieces of leaves and other rubbish fiastened to the web. After the leaves have fallen and the webs are destroyed by the weather the string of cocoons and rubbish remains fastened, usually to several twigs, by strong threads.

This species is abundant at New Haven, Comn., and Mr. McCook finds it equally so at Philadelphia. I have one from Lynn, Mass., but none from farther north.

Epeira triaranea McCook.
I'roc. Phil. Acad. Nat. Sci., 1876, p. $201=$ E. globose McCook, 1878 , p. $124=$ probably E. baltimoriensis or E. globosu Keyserling.

Plate XXXIV, figure 9. Plate X.XXV, flgures 6, 7.
Length five or six millimeters. The eephalothorax is light yeilowish brown with a fine dark median line from the eyes to the dorsal groove and indistinet dark marks on the sides of the head. The first and second pairs of legs have indistinct dark rings at the end and middle of each joint. The third and fourth pairs have darker rings at the ends of the joints only and the tibia of the fourth pair is half black. The abdomen is as broad as long or broader. The front half of the folimm is covered by four large white, yellow or reddish spots partly united together into a squarish figure surrounded by an irregular hlack line. The hinder half of the folimn has a pair of black spots on each segment between which are light brown markings. The sternum is yellow. The under side of the abdomen has a black spot around the spinnerets and another transverse dark mark just behind the middle, the rest is light yellowish. The epigynum is small with a short blunt finger.

The male is smaller than the female but marked in the same way. The tibie of the second pair are slightly thickened and curved and have large spines on the inner side.

The spider makes a very large fumnel-shaped tent out of which a thread runs to the center of the web, somewhat as in Ep. labyrinthea.

Salem and other places in Eastern Massachusetts; New Haven, Conn.; Philadelphia, Pa., McCook.

Epeira carbonaria Koch.
Beitrage z. Kemntniss d. Arachniden fauna Tirols. Zeitschrift d. Ferdinandeums, Innsbruck, $1869=$ Epeira packardii Thorell, Proc. Boston Soc. Nat. Hist., vol. xvii, 1875.

Plate XXXifi, figure 18. Plate XXXtt, figures 18 and 19.
This is an alpine species from the White Mountains. The female measures $8^{\text {mm }}$ long, cephalothorax $3^{\text {mm }}$, 1st leg 12^{mm}. The head is about half as wide as the thorax and light colored. The thorax is black or dark brown. The legs are ringed with black and white, the black rings usually twice as wide as the white. The coxa are light
colored and the sternum black or dark brown. The abdomen is black with five or six pairs of white spots down the middle, in some individuals united into a folium. At the sides are other small irregular white spots ruming into two-indistinct stripes underneath. The middle of the under side of the abdomen is black, with a central white strip running from the epigynum half way to the spinnerets. The abdomen is oval, narrower but not pointed behind. The whole body is covered with long black and white hairs. The epigymum projects considerably beyond the body, and the middle is covered by a long finger rmming out to a fine point, and usually turned outward at the end.

The male differs but little from the female in color and markings, but has the usual longer legs and longer spines.

These spiders live among the bare stones on the upper part of high nommains, above trees. On Mt. Washington, New Hampshire, they are common on the large slopes of bare rock above the Ledge. The spiders described by Thorell were found by Packard in Labrador. F. A. Bowditeh has found the same on Mt. Lincoln in the Rocky Monntains, most of them much larger than the White Mt. specimens. Ep. carbonaria of the Alps seems to me to be the same species. I have compared many females and find no constant difference, but have no mates of carbonaria for comparison.

In the valleys of the Alps and all over sonthern Emrope there occurs a closely related species, EP, ceropegia, with similar marking, but bright colors, yellow and brown in piace of the black and white. I have not scen any similar species from the White Mountains, but in the Rocky Mommains there is a species or variety very much like Ep. ceropergia, and some females from Mt. Lincoln have colors and markings between these two varieties.

Epeira placida Hentz.

Plate XXXIV, fiqure 2. Plate XXXVI, figures $10,13$.

Length of female 3 or 4^{mm}. The cephalothorax is brownish yellow with three brown stripes and black spots aromd the eyes. The legs are the same color, a little darker at the ends of the joints. All the legs have long dark colored spines. The abdomen is longer than wide, sometimes egg-shaped with the narrow end in front. In the middle is a brown stripe, with black spots along the edges. This stripe is narrow in front but wider behind the seeond pair of musenlar spots and contimes the same width to the spimerets. On the third segment there is a pair of white spots in the brown band. The
rest of the top of the abdomen is white with sometimes light brown oblique lines across the hinder part. The sides and under part of the abdomen are dark brown with oblique whitish spots on the sides, two white stripes below, and four white spots aronnd the spinnerets. The male differs but little from the female in the usual way. The finger of the epigynum is short and blunt between two lobes which extend slightly beyond the edge of the ford. The palpal organs are large for the size of the spider, and the shape of the hard parts characteristic, fig. 10.

Massachusetts, and New Haven, Conn.

Epeira gibberosa Heutz.
Ep. maculata Keyserling, Zool. Botan. Gesollsch., Wien, Aug. 2, 1865.
Plate XXXIV, figures 1, la. Plate XXXVI, figure 17.
Female 4 or $6^{\text {mm }}$ long. The cephalothorax is dull yellow with a narrow black stripe in the middle from the eyes to the dorsal groove. The legs are dull yellow with long black spines and sometimes narow longitudinal dark stripes. The abrtomen is gray, thickly eovered with yellowish spots. In the hinder part are two black lines partly broken into spots, and there are black spots and irregnlar oblique lines at the sides. 'The under side of the abdomen is brown with two white lines and fonr or six spots around the spinnerets very much as in E. placidu. The epigynum has a short blunt finger much like that of E. placida.

The male is somewhat smaller than the female. The palpal organs are large and the appendages long and distinct. 'The basal proeess is widened at the end and has a long tooth at each corner, with several shorter ones between. Near the basal process is a narrow, soft appendage which extends ontward nearly to the terminal hook. The other appemdages are the tube and a black process of nearly the same size jnst below it, and a short black process on the opposite side of the organ.

Massachusetts; Providence, R. I.; New Haven, Comn.

Epeira parvula Kejs., Sitzungsberichte der Isis, Dresden, 1863.
Plate XXXIV, figures $12,12 a, 12 b, 12 c$. Plate XXXVII, figures 1 and 2.
Adult female from Mt. Tom, Mass., $8^{m m}$ long. Male from New Haven, 6^{mm} long.

The abdomen is widest in front at the second segment. The back is flat with a slight hump behind, which projects backward beyond
the spinnerets, giving a triangular appearance to the abdomen. The folium is widest on the first segment and tapers backward to a narrow stripe. The colors are variable. Usnally there are two white spots in the first segment of the folinm, and behind this the folium is dark gray, darkest at the edges, and surrounded by a white line. The sides of the abdomen are lighter gray with dark oblique lines. In the middle of the folium are often several light spots in pairs. In some specimens the folium is light colored and surrounded by darker gray. Some specimens have the folium and all the markings on the back indistinct except a black stripe down the middle. The sternum is light in the middle and there is a light spot just behind the epigynum. The cephalothorax is gray, darker at the sides and behind. The legs are gray with indistinct darker rings at the ends and middle of each joint. At the end of each femur is a wide dark ring. The epigynum in the only adult female is covered by a wide finger tapering to a point.

The male is smaller and darker and has longer spines and wider dark rings on the legs. The palpal organ has a very large terminal hook and a large rough process at its base, both of which are folded down against the palpal organ. On the outer side of the organ is the tube and a hard curved process which supports the tip.

The adults are fonnd in June and July and great numbers of young in the autumn and winter. They live in all sizes of shrubs and bushes and in low trees.

White Mountains; Massachusetts and Connecticut.

Epeira foliata Hentz.

Plate XXXVII, figures $6,7,8,9,10$.
This spider resembles Ep. parvula but the legs are longer and the abdomen less triangular. The female measures 6^{mm} long and the first leg 12^{mm}. The second leg is nearly as long but the fourth is much shorter. The eephalothorax and legs are grayish or greenish yellow, darker towart the ends of the joints. The first and second legs are darker and have dark rings in the middle of the tibia ant tarsus. The abdomen is gray. The folium is slightly darker at the erges and is bordered by a white line. In the middle is a darker stripe ending in a point at the third segment, and also bordered by a black and white line. Beneath the body is dull yellow. The epigymum has a finger which is so wide at the base as to cover it. 'The tip' of the finger is curved backward and slightly thattened.

The male is a little smaller but otherwise resembles the female.

The tibia of the second pair is widened in the middle and has four large spines on the inner side. The palpus has a flat hook at the base of the tarsus, ending in two teeth. The parts of the palpal organ are small except the basal process, which is rery large and wide with two prominent teeth.

Swept from bushes in June, New Haven, Conn.

Epeira stellata Hentz.

Plate XXXIV, figure 17. Plate XXXTif, figures 3, 4, 5.
Female 12^{mm} long. The abdomen has a sharp hump on the front, one behind and five on each side. The hinder hump has a smaller one under it and the lateral humps on the first segment are sometimes double. 'The colors are light and dark brown, somewhat modified by the gray and white hairs. The markings resemble those of Ep. angulata. 'The edges of the folium run ont toward the humps. The cephalothorax is wide and the corners of the head are extended forward a little beyond the eyes. The legs have dark rings at the end and middle of each joint. The sternmm has a light stripe in the middle. The under side of the abdomen is wrinkled and has several oblique dark stripes. The epigynum is covered by a looked finger, as in domiciliorum.

The male is slightly smaller but otherwise much like the female. The palpal organ is small with short appendages.

A common spider in Massachosets and Comecticnt on grass and low Mishes; Dublin, N. H., July, iss2.

Epeira infumata Hentz.

> E. ectypa Keyserling, Sitzungsberichte der Isis zu Dresden, 1863.

> Plate XXXTtI, figures $11,12,12 a, 12 b, 13$.

'This spider when it draws up its feet has the appearance of a lump' of dirt. The color is dark brown with various black and white markings and reddish spots on the back of the abdonen. The cephalothorax is about $2^{m m}$ long. The head is high and flat in front, bringing the upper middle eyes dircetly over the front pair, while the lateral pairs are turned around so as to lie in a horizontal line. The upper middle eyes are much larger than any of the others.

The abdomen extends forward over the thorax :and is very high in front, where it has a pair of homps. At the mildle the abdomen is neariy as wide as long and nearly flat on the hack from the humps to the hinder end. The abdomen is marked with a tolerably distinet folimm, with the hinder segments marked by pairs of oblique blaek

[^9]spots. 'Toward the front, the folium is a little reddish and at the sides yellow. The legs are yellowish, nearly covered by irregular dark rings and spots. The sternum is bright yellow in the middle and black aromed the edge. The abrlomen is black beneath. Another specimen is much paler with the legs almost white, and the markings of the back broken up into a few gray spots.

Both specimens are females.
New Haven, Comi, Jume and July.
Microepeira, new.
This genns is distinguished by its small size and large epigynum and palpal organs, and also by its weh, which according to McCook has the rays united in gromps of three or four, and is drawn into a conical shape by a thread attached to the center.

Microepeira radiosa (McCook), Proc. Phil. Acad. Nat. Sci., 1881.
Plate XXXIV, figure 7. Plate XXXVIII, figures 1, 2, 3, 4.
This spider is only 2^{mm} long. The ceplatothorax is gray without any distinct markings, except black rings round the eyes and slightly darker stripes on the thorax. The legs are yellowish white, darker at the ends of the joints. The abdomen is nearly spherical. The back is white with brown markings. The folimm is not well defined but is plainer behind than in front, and consists of two rows of irregular brown spots, the pair on the first segment being separate from the others. In the middle is an irregular brown line. The stermm has a light stripe in the middle and is brown at the sides. The moder side of the abolomen is dark. The epigynmm is very large and triangular seen from behind. The opening is round and partly covered ly a thin plate that extends across the abdomen just behind the epigynum.

The male differs but little in size and color from the female. The palpal organs are very large. The tube is black and long, supported by a hard brown appendage. Fig. 1.

I have this species from the White Momntains, N. II., and from Waverly near Boston, Mass.; and from H. C. McCook from Philadelphia, Pa.

I have never noticed the wel), but according to Mr. MeCook (I'roc. Phil. Acarl. Nat. Sei., 1881) the rays instead of all pointing to one conter are mited in gromps of three or four, each group comected with the center by a single thread. The web is drawn into the shape of an inverted mombella by a thread extending from the center to a
neighboring twig and held tight by the spicler, who releases it suddenly to aid in entangling insects in the web.

Cyclosa Menge.

Preussische Spinnen, 1866. Simon, Arachnides de France.
Cyclosa conica (Pallas) Menge $=E p$. caudata Hentz $=E$, conicr Blk.
Plate XXXi ${ }^{\prime}$, figures $3,3 a$. Plate XXXVifi, figure 11.
This spider is about 6^{mm} long. The color is white and gray, varying from almost white to almost black. 'The abdomen of the female has a prominent hump at the hinder eud varying in size in different individuals. In the male there is only a slight trace of the hump. The cephalothorax is longer than wide and highest behind the middle. The color of the cephalothorax is dark gray or black with sometimes a light area just behind the eyes. The legs are white with dark rings at the end of each joint and in the middle of each joint except the femora on which there is only a mark on the muder side. On the first and second femora the dark ring is very wide, covering sometimes more than half the joint. In light individuals the markings ou the abdomen are obscore, but in well marked specimens there is a dark folium widest near the base of the hump and broken in two places at the sides. The sides of the abilomen and the back part between the hump and the spinnerets are marked with irregular black and white or yellow lines. The muder side is black with a pair of very distinct light spots across the middle. The sternum is dark.

The male is smaller than the female, has a smaller hump and a wider and darker thorax. The palpi are large. 'The tarsus is small and pointed at the end and does not cover the large palpal organ. The tube is long and hair-like, supported at the end by a stont hooked process. Fig. 11. The epigymum is nearly all external. It is widest at the outer end and has a small finger.

Mt. Washington, N. H. ; Eastport, Me. ; Albany, N. Y.; Eastern Massachusetts; and New Haven, Comn.

This species seems to live all the time in the web. Across the web there is usually a line of dead insects and other rubbish fastened together with a quantity of loose web in which the cocoons are also concealed. The spider standing in the middle of this hand where it crosses the center of the web looks like part of the rubbish.

Singa.

In Singu the metatarsi of the first and second feet have only very small spines or none. The eyes are smaller than in Zillu and the
head higher. The colors are orange, brown and black, usually bright. They live on low plants in open fields near water.

Singa variabilis, new.
Plate XXXIV, figures $16,16 \kappa, 16 b, 16 c$. Plate XXXVII, figures 19, 20, 21.
Femate $4^{\text {min }}$ long, a little smaller than putensis. The legs and ceplatothorax are light orange except the front of the head around the eyes which is black. The abdomen varies considerably in color. In a large proportion of them it is entirely black. In others there are two white stripes of varions lengths along the sides, all the rest being black. Others have a light stripe in the middle in addition to the side stripes. Still lighter individuals have a white stripe in the middle and others at the sides. Between these are brownish areas in which are two or three black patches of various sizes and shapes. These latter individuals resemble in markings the other species. The males are smaller but similarly marked. The palpal organs are black.
This is found in grass in wet meadows with the other species, all varieties of color occurring together.

Peak's 1sland, Portland, Me.; Eastern Massaehusetts; New Haven, Coun.

Singa pratensis, new.
Plate XXXIV, figures $15,156$. Plate XXXVII, figures $14,15,16,17$.
Female 5 or 6^{mmm} long; cephalothorax 2^{mm}; first leg j^{mm}. Cephalothorax light yellow in the middle and on the head, brownish at the sides. Legs dull yellow, darker at the ends of the joints. Ahdomen light brown with a donble white stripe in the middle and a white stripe cach side. Underneath there is a brown patch in the middle with a yellow stripe each sile and small yellow spots around the spimerets. The stermm is dark brown. The abdomen is large and regularly oval. The legs are short and small. The metatarsi of the first and second pairs have only very small and few spines. The epigynum is small.
The male has the aldomen much smaller than the female and the markings less distinct. The cephalothorax is as large as that of the female, but the head is a little narrower and the middle eyes a little farther advanced. The legs are stonter than in the female and have much longer spines especially on the tibia.

In grass on wet gromd, Satem and Holyoke, Mass., and New Llaven, Conn.

Singa maculata, new.

Plate NXiVii, figure 18.
Length 3^{mm}. The head is as high as wide, narrowed a little around the eyes. The front middle eyes project forward over the mandibles in both sexes. The front half of the head is black, the rest of the cephatothorax and legs orange. The abdomen in my specimens is orange with indistinct blackish markings across the hinder part, but the pattern is probably variable as in other species. Beneath, the colors are pale brown and orange. The epigynum resembles that of S. vuriubilis.

Male and female, New Haven, Conn., June 24.

Zilla.

These spiders resemble Stertodd. The abiomen is large oval and smooth and the legs short. The head is narrow and the lateral eyes as near the middle pairs as these are to each other. The colors are dull, black, gray aurl white.

The webs have a segment without cross lines in which a stout thread runs from the center to the nest. Insects canght in the web are rolled up in silk, attached to the spinnerets and carried along the thread to the nest. Plate xl, fig. 2.

Zilla montana c. Koch.
Plate Xixit, figure 11. Plate NXXVif, figures 22, 23, $26,28$.
Length of female 6 or 7^{mmn}. Cephalothorax yellowish white with dark edges and an indistinct gray stripe in the middle with radiating branches to the legs and side eyes. The legs are the same color with dark rings at the end of each joint and less distinct rings in the middle of each joint. The abdomen is oval and tlat above like that of Steatoda and the markings resemble those of Steatoda marmorata. The folium is black at the edges but nearly white in the middle where there is a median dark line or row of spots. On the front end of the abdomen is a white spot surrounded by black which indents the sides and front end. The folinm is broken near the hinder end as in Steatoda marmoratu. The sternum is dark with a middle yellow stripe. The under side of the abdomen has a black stripe in the middle with a yellow stripe on each side. The male has longer legs with longer and darker spines but otherwise resembles the female.

I have this spider from the White Momtains and young from the Adirondacks. The weh has a narrow segment without cross lines, Plate x, figure 2 , in which is a single thread by which the spider passes from the center of the well to the nest. Near Hermit Lake on Mt. Washington I saw one of these spiders capture a fly and after tying it inp with silk earry it along the thead to its nest.

I have compared the females with one from Switzerland with which it agrees very closely, but have not compared males. In the male characters it agrees with descriptions of Z. montana.

Zilla X-notata C. Koch.
Plate XXXIV, figure 13. Plate XXXVil, figures 24, こ. $5,27$. Plate XL, fig. 2.
This species is about the same size as Z. montonct and similarly colorerl. The legs are whitish with dark rings at the ends of the joints, and less distinct ones in the middle. The spines of the legs are black with back spots around the base. The cephalothorax is whitish with a fine black line on each side and a wide lark stripe in the middle of the heal and nearly covering it, and tapering to a point near the dorsal groove. In this dark stripe are three black lines converging behind. The abdomen is marked with a grayish folium scolloped at the edges, which are black in irregular spots. The middle of the folium is whitish, lightest in front, where it is bordered by black. In the hinder part are two or three pairs of black spots which are sometimes united into transverse black stripes, in front of each of which is a white line or pair of spots. Ontside the folium is a white line, and beyond this the sides are covered with oblique black bands that in some individuals nearly touch each other. Under the abdomen is a midllte black stripe from the stem to the spimerets. The epigynum is black and much smaller than in Z. montence. The males have the first and second pairs of legs much longer than the female, the palpal organs are smaller than those of montenc, and the tibia of the palpus is more slender.

This spider was abundant at Wood's Holl, Mass., in the summer of 1883, chiefly muder the Light Honse wharf, where it livel in company with Epreinu selopetaria in about equal mumbers. The nest is a tule nsually open at both ends attached in a crack or comer. The webs were of the nsinal Zilla pattern with a vacant segment near where the thread passes to the center from the nest. Where the nest was so phaced that this thread formed a large angle with the plane of the web, the web was sometimes complete as in Epeire.

The web is begmo like that of an Epeira, but after the smooth
spirals have been placed over about a quarter of the wel the spider begins to turn back on reaching the ray next the thread to the nest and passes around in the next on the opposite side. When the final spirals are put on, this segment is left open from the circumference to the center. After catching and tying up an insect she attaches it to the spimerets and carries it to the nest.

Many trees have been brought to Wood's Holl from the north of Europe for cultivation, so that it is possible for these spiders to be imported. I have not seen them nor heard of their presence elsewhere in New England.

Cyrtarachne Thorell.

Voyage of the Swedish frigate, Eugenie, $1868=$ Cyrtogaster Keyserling, Sitzungsberichte der Isis, Dresden, 1863.
The name Cyrtoyaster was nsed carlier for a genus of Hymenoptera.
These spiders are all short with the abdomen wide in front and partly covering the thorax and usually have spines on both thorax and abdomen.

Cyrtarachne bisaccata, new.
Plate NXXIV, figures 11, 11 a.
Femate $8^{m m}$ long. Abdomen 8^{mm} wide. The head is low and wide. The eyes all small, the fom middle forming nearly a square on a slight elevation. The head is slightly narrowed behind the eyes. The cephalothorax is slightly scolloped at the sides. It rises from the eyes backward and has at the highest part behind the middle two large horms. The back is covered with conical scattered points. The cephalothorax is light brown darkest in front. The abdomen is wider in front than long and extends over the thorax as far as the two horus. The four principal muscular spots are large and dark brown. The front of the abdomen is light brown with various whitish irregular markings, the back part is yellowish white. The under side of the body and legs are white except the ends of the first and second femora which are grayish.

Only one specimen of this was found on a beech tree at New Haven, Comn., Oct. 22, 1882, with two cocoons. These were dark brown, as dark as the bark of the tree and as hard. Around the middle of each was a circle of irregular points. Pl. xxxur, fig. 12. One of the cocoons was attached by a strong stem to the bark and the other was attached in a similar way to the first cocoon. 'The spider held on to one of the cocoons. The following spring another similar pair of cocoons were found on a low oak tree in Pine Swamp,

New IIaven, still firmly attached to the bark. From these the young came ont in Junc.

Acrosoma Perty.

These spiders have the abdomen flattened on the back and surroundel by several pairs of spines of varions sizes and shapes. The abdomen is large and extends backward beyond the spinnerets which appear to be in the middle of the under side. The cephatothorax is not as wide as long. The legs are slender and the hinder pair as long as the first or longer. The colors of the abdomen are bright. . The males differ much from the females, resembling the young in form and color:

Acrosoma rugosa $=$ Epeira rugosa Hentz.
Plate XXXVIII, figure 10.
This is about the same size as A. spinea. The legs are shorter and stouter. The cephalothorax has three dark stripes. The legs and eephalothorax are both covered with short hairs at the base of each of which is a slight elevation. The abdomen is higher than in spinea and dull yellow with irregnlar black spots above and below. The abdomen extends backwards half its length beyond the spimerets. It is square at the posterior end and has five pairs of spines of which three pairs are along the edges of the flat upper side and two pairs behind.

The male is described by Hentz, who saw them pairing. It differs very much from the female, having a long narrow abdomen withont any humps or spines.

This species is evidently not common in New England, the only one I know is in the museum of Yale College from New Haven, Comn. The figure is from a specimen from Indiana.

Acrosoma spinea $=$ Lpeira spinea Hentz.
Plate XXXYtif, figures $5,6,7,8$.
The adult female of this species is distingushed from all the other native Epeiride by its triamgular abdomen with the himler angles extended to two sharp spines half as long as the rest of the abdomen. The abdomen is bright yellow or white above. The spines are black at the tip and redilish or orange at the base. There are two black spots at the front end of the abdomen and the muscular spots are black. Besides the two posterior spines there are two
other pairs, one pair near the front end of the abmomen and another smaller on the sides half way back. The body of a full grown female is abont 7^{mm} long, and the distance between the tips of the spines is equal to the length of the body. The legs and cephatotho-- r:ix are yellowish brown, the latter with whitish edges. Underneath, the abdomen is strongly wrinkled and marked with black hands and yellow spots. The posterior spines are lighter on the mader side. The young liffer greatly from the adult female. The abdomen is longer than witle. The posterior spines are short and blont and the general eolor of the body is clark brown. 'There are two light spots just in front of the base of the spines and other smaller ones on varions parts of the abomen. The two himder pairs of legs are whitish with longitudinal dark stripes. The first and second pars are dark toward the base and white at the tips.

The males resemble the young. They are about $t^{m m}$ long. The abdomen is long and widest behind and troncate withont any spibes except slight homps: On each side of the abdomen are three black spots in which are slight hmmps. Across the himler part of the abdomen are four light spots as in the young. The cephalothorax is dark brown and the legs light yellow with dark markings as in the young.

They become adult the last of July and are found till October. They are common in Massachnsetts and Comectiont. The webs are usually in low bushes and the ault females seem to hang all the time in the welos.

Acrosoma mitrata $=$ Epeira mitrata Hentz.
Plate XXXViil, figure 9.
This is a much smaller species than spiner, measuring 4 or 5^{mm} long. The abdomen of the female extends forward so as to cover half the cephatothorax. It is three-fourths as wide as long and square at the hinder end where it has two pairs of spines. The abdomen is white or yellow above. There is a dark spot of variable size and shape over the first segment and a dark middle stripe lee ween the hinder spines. There are also mmerons black musenlar spots. Below the abdomen is wrinkled and marked with black and yellow very much as in spiner. The cephalothorax and legs are brownish yellow. The cephalothorax is shorter than in spinef, the front of the head square and the sternum nearly circular.

Common at New Haven, Conn. I have not found it in Eastern Massachmsetts nor farther north.

Meta.

I nse this gellus for Metu menardi, neriance and the like, not including the slender bright colored species placed bere by Keyserling which, as suggested by Thorell, better form another genus. They have longer month parts than Epeird and the abdomen is deeper, more like Theridinm. They live in eaves or shady places.

Meta menardi (Latr.) Thorell = Epeira fusca Blkw.

Plate XXXIT. figures 18, 18a. Plate XiXVif, figure 33.

Adnlt female, 14^{mm} long; cephalothorax, 5^{mm} long, 4^{mm} wide; first leg, 28^{mm}. The hinder part of the cephalothorax is as high as the head except a deep pit in the middle. The legs are yellow with wide dark-brown rings at the end and middle of each joint. 'The cephatothorax is brownish yellow, darker in the middle and at the sides. The abdomen is high in front and pointed behind, as in Theridirun tepidariorrom. It is dark brown and dull yellow. At the front end are two dark-hrown patches, between which is a light stripe which spreads out toward the fom principal musenlar spots. Behind this are several light cross lines. Underneath the abdomen is brown with two yellow stripes. The epigynum is covered ly a wide, short aml thick hook turned backward. The cocoon is large but so loose that the eggs can be seen through it. The webs are horizontal or inclined, with a hole through the center.

The male is about half as large as the female and colored the same. Both patella and tibiat of the male palpi are wide as long. The tarsus is large and nealy as wide in the middle as long. At the base is a large hard process turned upward, and on the outer side of this is a light eolored branch covered with hairs. The palpal organ itself does not fill the hollow of the tarsus. The tube is straight and lies by the side of a hard process of equal length. At the base of the tube is a shorter rough process.

This species lives in caves and other damp and shaty places, Berlin Falls, N. H., Boston, Mass. Gaves in Kentncky and Virginia.

Argiope.

In draione the eyes and month parts are as in Epeira. The abdomen is longer than wide and pointed behme. The sexes difter greatly in size, the males being extremely small. The females live all the time in the web hating mo nest or tent. The thorax and, in the young, the abolomen are corered with silvery hairs. The colors of the abdonmen we very bright often black cross stripes on a yellow
gromd, or as in ripurial the middle portions of these stripes are mited together into a longitmlinal black middle band. The webs are crossed in the middle by a wide zigzag white band that partly conceals the spider when young. The cocoons are large and stiff' like paper on the onter surface. The eggs are laid in antumn, and the young hatch during the winter and leave the cocoons early in the summer, becoming adult in August.

Argiope riparia $=$ Epeira riparia Hentz and E. sutrix Hentz.

Plate AXifl, fieure 19. Plate NXXVIII, figures 13, 14. 19.

This is one of the largest and most conspicmons native sjeces of the family. A large femate measured $20^{m m}$ long; cephalothorax, $8^{\text {mon }}$; first legs, 30^{mm}. The cephatothorax is nearly as wide as long and covered with silvery white hairs, except around the eyes where it is black. The front legs are entirely black, the others have the femora reddish or yellow and the rest black. The abolomen is oval, a little pointed behind and slightly notched in front, with two humps at the comers. The folmm is back, marowed between the humps, and widening again around the large yellow spots of the second segment. It extends to the end of the body about the same width, with scollops and branches on each segment. Along the sides of the folinm are two bright yellow longitudinal bands or rows of irregular spots, and in the folimm are two prairs of ronnded yellow spots on the second and thitd segments. Undemeath the color is black with a yellow stripe on the sternum, and four paits of small yellow spots in the middle and two wide yellow stripes on the sides of the abdomen. Around the spinnerets are two large triangular yellow spots and one or two pairs of smaller ones. The sides of the abdomen betow the large yellow spots are marked with irregular oblique lines of black and yellow. The epigyumm is covered by a long brown process directed backward and covering the openings entirely.

The young of this species differ considerably from the adult. Until nearly full grown the legs are distinetly markel with dark rings on the ends and middle of each joint, the ground color being white or pale yellow. When rery young the abdomen is more slender, the color is pale yellow, and the markings gray without any of the strong black and yellow of the adult. Hentz's Epreirct sutrict is perhaps the young riparia at this stage.

The male differs greatly from the female. It is only 5 or $6^{m m}$ long. The colors and markings resemble those of the female but are gener-
ally less hright and sharp. The dark marks on the sides of the thorax, whieh are nearly comeated by the hairs in the female, are more distinct in the male and eover a large part of the thorax. The legs are dark brown, lighter toward the tips and covered with dark hairs amd black spots. The palpi are very large in proportion to the size of the spider. The pahal organ is large and nearly all exposer outside the tarsus. 'Tlie tube is flat and slightly barbed at the end, and is supported by a long, thin paddle-shaped appendage, and a *horter one with a thin tooth on one side. Fig. 14.

This species makes a strong web, usually more or less inclined, in grass or low bushes, generally near water or on wet gromnd. 'The middle of the web is usmally crossed by a white zigzag band of silk, which is of no apprarent use to the adnlt spider, but when young helps to conceal it, especially when the web is much inclined. On one or both sides of the romd web and within an inch or two of it, the spider olten makes a loose irregntar web. The female seems to remain all the time in the center of the wel, making no tent or nest for concealment. 'The male often occupies a corner of the female's web, among the irregular theals to which he perhaps adds some of his own. In copulation the male lays tlat against the under side of the female's abotomen, clasping his legs aromd it. While seeking to do this he rmons about lightly over the female, and if attacked by her drops oft the wel, to the ground.

In September the fumale lays in a large pear-shaped cocoon with a brown paper-like surface hung by mumerous threads in grass or bushes. Inside the papery sutface is a mass of loose web surfounding the eggs, which are packed closely together under a emp-shaped cover attached to a thick stem of silk rmming throngh the middle of the cocoon. From cocoons fomm mofinished it appears that the stem and eIp are first made and the eggs attached in a hump moderneath, and afterward covered with the loose thread. The young hatch in the fall or winter but remain in the cocoon until May or June.

Common in Massachusetes amd southward.

Argiope tlansvelsa $=$ Fipeire fosciatu Hentz.

This species is somewhat smather than ripuria. The eephatothoras is 5^{mm} long : mod the whole body' measures 15 to 20^{mmm}. 'The first leg is $25^{\text {mun }}$ long. The abdomen is more prointed hehind than in ripuria and the markings very ditlerent, The gromet color is white or
yellow and is crossed by a great number of black transverse lines, three on each segment, which are sometimes ohscured, especially in young spiders, by a thick covering of silvery white hatis. 'The cephathoras is covered with white hairs throngh which the dark markings on the sides of the thorax show indistinctly. The legs are light yellow with black bands around the ends and middle of each joint. The femora of the first leg's are sometimes entirely black. The epigynum is uncovered, showing two openings separated by a slight ridge. The colors and markings under the body are like those of A. ripuria. 'The young of this species have the back entirely white until nearly full grown.

The male is about 5^{mm} long. The legs and cephalothorax are yellowish and the abdomen white. The markings underneath are similar to those of the female but paler. The legs are yellowish, marked with black spots but no rings. The cephalothorax is rather wider than in the mate of ripmria and does not have the dark marks along the sides. The palpi are very different from those of riparia. The tube is coiled once around the end of the bulb, the tip turned slightly outward. It is accompanied by two hard appendages, as in riparia, but these are shorter and somewhat twisted with the tube.

This has the same habits as riporia, and is found with it in the same bushes. It remains in its webs rather later in the fall than the other species. The cocoons are flat on top, not narrowed into a stem.

I have females from the Adirondack Monntains, collected by F. A. Bowditch, and from Ottawa, Canada, J. B. Tyrrell. In Eastern Massachusetts it is very common, especially near the sea-shore. Near New Haren, Comm, it is fonnd with riparia but neither is common. It extends southward probably as far as Florida.

This species was called Epriru fusciatu by Hentz, who supposed that it might be identical with the Epeire fusciutce or bruemichit of Enrope. The differences in the epigynum and male palpi are enough to separate the two species. In bruemichii the epigymum is covered by a process directed backward as in ripmer, while in transverse, the two openings are mucovered. The males of bruenuchiia are proportionately larger than those of tiranseersu and have more distinct markings on the abdomen and thorax. The tube of the palpal organ is less twisted than in ticunsverse.

Argyroepeira, new.
These spiders have long slender legs like Tetramutha. The abodomen is long and round but often thicker in the middle and never as
stender or long as in T'etragnuther. The colors are bright green and yellow with black and silvery makings on the abdomen. The maxille are long as in Metu. The lateral eyes are widely separated from the midlle ones. The mate palpi are long amd the palpal organ large and rommed and only partly covered by the tarsus. Keyserling inchmes these in the genns Meta, and Walckenaer in Tetrugnutha, 2ud family.

Argyroepeira hortorum (Hentz) = Eipeiru hortorum Hentz.
Plate XXXYit, figures $29,30,31,32$.
Length 5 or $6^{m m n}$; first leg $14^{m m}$. The abdomen is round and about twice as long as wille and nearly as thick at the hinder end as in front. The abdomen is silvery with transparent marks over the dorsal ressel and its branches. Sometimes there is a black line along the middle and another each side. On each side there is also sometimes a bright yellow stripe. Undemeath the body is black mixed with greenish spots. The legs are green or yellowish with narrow black rings at the end of each joint. The cephatothorax is green or yellow with a fine black line on each side. The epigynum is dark hown and only very shighty raised and divided at the edge of the foll into three parts by shallow grooses.

The male is abont half as large as the female, with the legs much longer, the first pair being $17^{\text {man }}$ long. The male palpi are longer than the cephahothorax. The patella is about as short as thick, and the patella and tibia together are nearly as long as the femur. The tarsus is small amb oval. The other appendages of the palpal organ project heyond the tip.

New Haven, Comn.; Milton, Mass.

Tetragnatha.

In Tetragmathe the hody is long aml slemter. The eyes are in two rows varionsly curved. The legs are long and slemler, and when the spider rests in the weh, are extemed in front and behind parallel with the bouly. The colors are light brown and yellow with silvery spots and hands above and darker with yellow stripes bencath. Sometmes the whole horly is bright green with white and red markings. The mandibles are long, and longer in males than females. Besides the teeth on the inmer side of the mandibles, the males have an allitional tooth on the upper side near the tip which curves forwad and is usually forked at the end. The webs are often inelined or horizontal and are nsaally near water on low plants.

Tetragnatha vermiformis.

Plate XİIIX, figures $12,13,14$.
The females of this species have the abdomen long ant straight and measure 10 or $12^{m m}$ long, cephalothorax 3^{mm}, mandibles 2^{mm}, first leg 21^{mm}.

The upper row of eyes is curvel hackward as in laboriosa. 'The front lateral eyes are widely separated from all the others, twice as far from the middle pair as these are from each other. The cephalothorax is dull yellow with dark stripes in the middle and on the edges. The abdomen has a distinct folimm with scolloped edges and a light line in the middle.

The male is smaller than the female. The mandibles are not mueh longer than those of the female, and the teeth are not much larger:

Beverly, and Middleton, Mass.

Tetragnatha extensa Linn., Thorell, etc.

Length of female 7 to 10^{mm} according to size of abdomen, cephalothorax 3^{mm}, mandibles 2^{mm}, front legs 20^{mm}, palpi 5^{mm}.
'The legs and cephalothorax are hrowner yellow than in most species and sometimes the cephatothorax has three indistinct brown stripes and the legs brown spots at the ends of the joints, and around the bases of the hairs. The stermm is the same color as the legs, occasionally showing a lighter stripe in the middle. The abomen has varions dark and light brown markings, sometimes forming a narrow folimm on a light ground, on each side of which is a dark and light line. The abdomen is comparatively short, being $\frac{1}{3}$ to $\frac{1}{4}$ as wide as long. The rows of eyes are only slightly curved backward. The lateral eyes are nearer together than the middle ones, and are usually surounded by black rings so that they appear to touch each other. The mandibles are two-thitds as long as the cephatothorax, and not much inclined forward.

The male is somewhat smaller and more slenter than the female, but the legs are no shorter, and the mandibles slightly longer and more slender. The palpi are $4^{\text {mm }}$ long, the femur $2^{m m}$. The tibia is nearly twice as long as the patella. The secoml tooth on the upper side of the claw groove of the mandibles is much longer than the others.

Northern New Sork; White Mis.; Massachusetts and Connecticut.

It appears to be the species common all over Enrope. I have compared specimens from France :md Germany.

Tetragnatha grallator Hentz.

T. yrullutor Keyserling, Beitrage zar Kenntniss der Orlitelarix Verhandlungen Zool. Bot. Gesellscllaft, Wien, 1865.
T. elonguta (Wralck.) Thorell in Bulletin of Hayden's L'. S' Geologieal survey of the Territories, vol. iii, no. 2. Thorell describes several varieties and thinks it probable that this is the same as the European T. extensu.

$$
\text { Plate XXXiX, fictres } 1,2.3 .4,5,6
$$

T. grollutor is the largest New England species. The female is 10 or $12^{\text {mm }}$ long, epphalothorax $3 \frac{1}{2}{ }^{\text {mum }}$, mandibles as long as the cephalothorax, front legs $35^{m m}$ long. Colors as in ectenst, varying from light yellow to dark brown. In dark individnals, three stripes on the cephalothorax and the markings on the abdomen are very distinct. 'The abdomen is often twice as wide near the front end as farther back. The mamibles are tumed forward in some individuals nearly horizontal. On the mper ellge of the mandibles are two teeth near the end, one large and one small, and seven small ones toward the hasal end of the claw groove. The lateral eyes are close together.

The male is somewhat smaller, and has jaws longer than the cephalothorax. The spines on the under side of the elaw groove are very small except one near the end, which is curved forward. On the upper side of the groove the second tooth is large and prominent. Behind this are five teeth of the nsual size, followed by five or six very small ones close together. Palpii $6^{m m}$ long, tibia twice as long as the patella and both together as long as the femmr.

Eastern Massachusetts; Central New York.

Tetragnatha laboriosa Hentz.

Keyserling, Zool. Botin. (ievellschaft in Wien, 1865.
Plate NXXid. figures 7, 8, 11, 19. Plate NL, figlre it.
Length of female abont $7^{m m}$. Smaller than extense and grallutor. ('ephalothorax $2-2 \frac{1}{2} \mathrm{~mm}$; first leg $12-17^{\mathrm{mm}}$. Mandibles short, abont half as long as the cephalothorax. Lateral eyes as far apart as the middle ones. 'The legs and cephalothoras are light yellow. 'The abolomen is dark beneath with two light stripes. The batek of the abdomen is sometimes silvery white with transparent stripes over the dorsal vessel. In other individuals there is a very plain folime with dark and light stripes along the sites. A few, apparently of this species, hat the ahdomen hright green with a white stripe each
side of the folium along the lower edge of which and on the front end of the abdomen were irregular red spots. They were found in white pine trees, Essex, Mass.

The males are a little smaller and have the abdomen more cylindrical. The mandibles are two-thirds as long as the cephalothorax. The tibia of the palpus is short, not much longer than the patella, and both together are a little more than half as long as the femur.

The second tooth on the upper side is the longest, and from this four or five other teeth decrease gradually in length to the base.

White Monntains to Connecticnt.

Tetragnatha straminea, new.
Plate XXXIX, figures 15, 17, 20, 21.
Female 10^{mm} long; cephalothorax $2 \frac{1}{2} \mathrm{~mm}^{\mathrm{mm}}$ long, $1 \frac{1}{2} \mathrm{~mm}$ wirle; first leg 22^{mm}; mandibles $1 \frac{1}{2} \mathrm{~mm}$.

The hinder row of eyes is curved backwards more than in laboriost, and the lateral eyes are farther apart. The abdomen is silvery white above and dark beneath with two light stripes. The eephalothorax is light yellow with two parallel gray stripes. The legs are light brownish yellow. The alodomen extends backward aloout half its diameter beyond the spinnerets. It is long and slemder, thickest toward the front end and seldom swelled out in the middle as in laboriosu.

The males are smaller and more slender but their legs are no shorter than those of the females. The palpi are longer than those of laboriosu. - The tibia is as long as the tarsus and nearly twice as long as the patella. The mandibles are abont two-thirts as long as the eephalothorax. The arrangement of the teeth differs but little from that of laboriosu.

Eastern Massachusetts; New Haven, Conn. Arults from May to July.

Tetragnatha caudata, new.
Plate XXXIX, figures $16,22$.
Two females from Mahden and Derham, Mass., resemble very closely T. straminer, except in the shape of the abrlomen, which is longer and has a tail about a quarter its length, extemding backward beyond the spinnerets. The shape of the abdomen of streminere seems to be very constant, so that this is probably another species.

Trans. Conn, Acad., Vol. VI.
SEPT, 1884.

Pachygnatha.

The gemus Pachygmuthu has been generally classed with the Theridider near Steatode and Erigone on accomnt of its terrestrial habits and the absence of any apparent web. In structure it however resembles Terragmothe, especially in the copulatory organs of both sexes. It resembles Tetragnutha also in the large mandibles and in the colors and markings. It does not, however, spin a geometrical web, nor apparently any web, but is always found under leaves and stones near the gromid. The feet do not have toothed hairs under the claws. In general appearance these spiders resemble Steutorda. The abdomen is oval and rounded and smooth on the back. The cephalothorax is widened in the middle. The sternmm is wide and hard.

Pachygnatha brevis Keys.
Zool. Bot. Gesellschaft, Wien, 1883 = Pachygnatha tristriata Keys., Zool. Bot. Gesellschaft, Wien, 1882.

Plate XXXIV, fisure 21. Plate XL, figures 8, 10.

This is the common large and light colored species. The whole borly is 5 or 6^{mm} long, the abdomen and cephalothorax about equal in length. The legs and cephalothorax are light brownish yellow, the latter with three dark brownish bands. The abdomen is light yellow with an indistinet grayish folum, in the middle of which is a white band. The mandibles, maxillæ and stemum are dark reddish brown. 'The under side of the abdomen is gray except two yellow longitudinal stripes. There is but little difference between the sexes in size, color or the general shape of the body. The middle eyes nearly form a square, the hinder pair being slightly the farthest apart. The lateral eyes ahnost touch each other. The mandibles are stont and in both sexes more than half as long as the cephalothorax and as liar apart at the tips as they are long. Under the claw groove are three or four small spines and above the groove three larger ones which are larger and the teminal one more prominent in the males. The maxille are obliquely truncated at the ends as in Erigone, and thickly haired on the inner edges beyond the lip. The lip is shorter than wide. 'The sternum is in front nearly as wide as long but tapers backward so that the coxe of the hind legs almost tonch. 'The opening of the reproductive organs is just back of the spiracles in the male, but as far back as the middle of the abdomen in the female.

Males and females are fomm moder leaves in damp woods at all seasons and oceasionally muler stones without wehs.

Montreal, Canada; Eastem Mass.; New Haven, Conn.

Pachygnatha autumnalis Keys.
Zool. Bot. Gesellsch., Wien, 1883.
Plate XXXIV, figure 22. Plate XL, figitre 9.
This is smaller than the other species, measuring about 4^{mm} in length. The markings are similar but the colors are brighter. The cephatothorax is narrower than in brevis and the front part of the head including the upper middle eyes is abruptly raised in both sexes. The three dark stripes on the cephatothorix are mited together toward the head which is nearly black especially in the males. The folimm is dark brown on the edges and has a light stripe in the middle which is yellow along the edges and sometimes bright red in the middle. The upper middle eyes are much larger than the others and on the sides of a hump in both seses. The legs are stont and stiff and brownish yellow in color, the front pair the darkest.

Beverly, Cambridge and Lexington, Mass., ind New Maven, Conn. Keyserling's specimen eame from Pemsylvania.

EXPLANATION OH TIE PLATES.

Plate NXXifi.

1. Epeira insularis, dorsal markings of female $\times 2$.
2. Epeiru mormorea, dorsal markings of female $\times 2$.
$3,3 u, 3 h, 3 c$. Epeiru patayiata, dorsal markings of female $\times 2$.
3. Fipeira sclopeturia, dorsal markings of female $\times 2$.
4. Epeire stric, dorsal markings of female $\times 2$.

6, 6a. Fpeirc nordmunui, dorsal markings of female; 6b, ventral markings $\times 2$.
7. Epeira insularis, male $\times 2$.
8. Epeira trifolium, female $\times 2 ; 8 a$, abdomen of light colored female with indistinet markings $\times 2 ; 86$, male $\times 2$.
9. Epeira thaddeus.
10. Epeiru cinerect, dorsal markings of female $\times 2$.
11. Epeiru solitaria, male $\times 2$.
12. Epeira angulata, female $\times 2$; 12 at, male $\times 2$.
13. Epeira silicutica, male $\times 2 ; 13 a$, abdomen of female $\times 2$.
14. Epeiru corticaria, female $\times 4$.
15. Epeira pratensis, abdomen of female $\times 4 ; 15 a$, male $\times 4$.

16, 16u. Epeiru triviltutu, dorsal markings of female $\times 4$.
17. Epeire domiciliorum, dorsal markings of female $\times 4$.

Plate XXXIV.

1 aud 1 . Epeira gibberosa, markings of female $\times 8$.
2. Epreira plucidr, markings of female $\times 8$.

3 and $3 a$. Cyclosu conica $\times 4$.
4. Epeira displicatu, dorsal markings of abdomen $\times 4$.
5. Fipeira alloventris, dorsial markings $\times 4$.
6. Epeiru juniperi, dorsal markings $\times 4$.
7. Microepeira rucliosu $\times 16$.
8. Epeira labyrinthea $\times 1$.
9. Fipeiru triuraneu, dorsal markings $\times 4$.
10. Epreirce folicta $\times 4$.

11 and 11a. 'yrturachne bisuccuta $\times 4$.
$12,12 a, 12 b, 12 c$. Fipeire prorvulu, dorsal markings.
13. Ville X -uotetu, dorsal marking's $\times 4$.
14. Zilte montama, dorsal markings $\times 4$.
15. Singu prutensis, female; 15a, male $\times 4$.

16, $16 a, 166$. Singe vuriabilis, female $\times 4 ; 16 c$, male $\times 4$.
17. Eipeiru stettutu, female $\times 4$.

18 and $18 a$. Meta menardi, femate $\times 4$.
19. Argiope ripuria, female, natural size, dorsal markings.

20 and 20 a Argiope transeersa, female, natural size.
21. Pachyynuthu brevis, male $\times 8$.
22. Puchygnutha autumnalis, male $\times 8$.

Plate XXXV.

1. Male palpus of Epeira silvatica.
2. Male palpus of Epeira anguluta.
3. Male palpus of Epeira solituria.
4. 1st and 2d coxit of Epeire siluntica.

5 and 6. Epigynum of Epreire silueticu.
7 and 8. Epigynum of Epeirce cinerea.
9. Epigynum of Epeira corticuria.
10. Male palpus of Epeirce sclopeturiu.
11. Nale palpus of Epeiru putcegiutu.
12. Nale palpus of Epeirit strix.

13 and 14. Male palpus of Fipiru trifolium.
15 and 16. Male palpus of Epreiru quudruto; same scale as 13.
17. Male palpus of Epeiru mutmoreu.
18. Male palpus of Epeire insuluris; same scale as 17.

19 and 20. Epigynum of Epeicu quudrata.
21 and 22. Epigynum of Epeira trifolum.

Plate XXXVI.

1. Second tibia of Epeiru domiciliorum.
2. Second tibia of Epeira tricittutu.
3. Male palpus of Epeira trivittuta.
4. Male palpus of Epeiru domiciliorum.
5. End of palpal organ of Epeire trivittata.
6. Palpal organ of Epeiru triuranea.
7. Epigynum of Epeiru triaranea.
8. Epigynum of Epreira trivittata.
9. Nale palpus of Epeirct pratensis.
10. Male palpus of Epeira pilacide.
11. Male palpus of Epeira labyrinthea.
12. Epigynum of Epeiva albocentris.
13. Epigyuum of Epeira placilda.

14 and 15. Male palpus of Epeiru juniperi.
16. Epigynum of Epeira juniperi.
17. Male palpus of Epreira gibberosa.

18 and 19. Male palpus of Epreire carbonuriu.
20. Male palpus of Epeira displicuta.

Plate NXXVII.

1. Male palpus of Epeira parvulu.
2. Eipigynmon of Fipeire purcule.

3 and 4. Male pralpus of Epeirch stellutu.
5. Epigynum of Epeiru stellutu.
6. Hyes of Epeira foliata.

7 and 8. Male palpi of Epira foliata.
9. Epigymum of Epriru foliata.
10. Seeond tibia of male Ei eiru foluta.
11. Sille of Epeinra infumutu.
12. Abiomen of Epeiru infumalt.

12a and 12b. Epigynum of Epeiru infumata.
13. Eyes of Epeira infumata.

14 and 15 . Tibia of male palpus of singu pratensis.
16. Epigynum of Singa pratensis.
17. Male palpus of singa pratensis.
18. Epigynum of Sinya maculuta.
19. Epigynum of Singa variubitis.

20 ant 21. Male palpus of Singa varicubilis.
22 and 23. Male palpus of Zillu montune.
24 and 25. Male palpus of Zilla I-notata.
26. Eyes of Zilla montiona.
27. Eypigynum of Zillu X-notata.
28. Epigymum of Zilla montrena.
29. Aryyrapeira hortorum, mate.
30. Argyrmpeirc hortorum, female.
31. Mate palpi of Argyrapeiru hortorum.
32. Epigynum of Argyrapeira hortorum.
33. Male palpus of Meta menardi.

Plate XXXVIII.

1. Micrapeira radiosa, male.
2. Micropeira radiosa, female.

3 and 4. Epigynmm of Wicrapeiru rudiosa.
5. Acrosoma spinea, female.
6. Acrosome spinea, male.
7. Acrosomu spiner, young female.
8. Acrosomu spinea, male palpus.
9. Acrosoma mitrate.
10. Acrosoma ruyosa.
11. Male palpus of Cyclose conica.
12. ('ocoon of Cyrturachne hisaccata.
13. Aryiope ripariu, male.
14. Argiope ripuria, male palpms, mper and under sides.
15. Aryiope transversa, male.

16 and 17. Argiope transiersa, male palpus.
18. Argiope transtersa, ерigymum.
19. Epigynum of Argiope riperiu.

Plate IXMiS.

1. Tetragnatha grallutor, mandible of female under side.
2. Tetruynutha grullitor, mandible of male, under sille.
3. Tetringnutha grallutor, mandible of small male.
t. Tetragnathu grallutor, mandible and eyes of male, upper side.
4. Tetregnutha grallator, maxille of male.
5. Tetragnatha grallator; maxille of female.
6. Tetregnatha laboriosa, eyes of female, from aloove.
7. Tetragnatha laboriosu, mandibles and eyes of male.
8. Tetruynathu extensu, mandibles and eyes of male.
9. Tetrugnatha extensa, mandibles of female.
10. Male palpus of Tetrugnathue Luboriosu.
11. Tetraynutha vermiformis, male mandibles.
12. Tetrugnetha vermiformis, male palpus.
13. Tetragnatha vermiformis, female mandibles.
14. Tetragnatha straminef, male mandibles and eyes.
15. Tetraynatha cendeta.
16. Tetragnatho streminea, mandibles of female.
17. Tetragnutha straminea, eyes from above.
18. Tetrelyutha lahoriosu, female mandibles.
19. Tetragnuthet stramineet, male palpus.
20. Tetrugut tha streminea, abdomen.
21. Tetragnathu caudata.

Plate NL.

1. Part of web of Epeira sclopeteria.
2. Part of web of Zillu $\overline{\mathrm{F}}$-notata.
3. Eipeira sclopethria, foot of first or second pair, showing two teeth on the front or inner claw longer than the others.
4. Epeirel sclopetariu, font of third pair, showing two longer teeth on inner hind claw.
5. Epeira sclopeturiu, foot of fourth pair, showing two long tecth on hind or inner claw.
6. Maxille of Epeira insulteris.
7. Internal epigynum of Tetraynuthat Luboriosu.
8. Internal epigynum of Puchyynathu tristrinta.
9. Male palpi of Puchygnatho cuthmnalis.
10. Male palpi of Pachygnather brecis.

INDEN.

Acrosoma mitrata 327 Epeira pratensis 310
Acrosoma rugesa 326 Epeira radiosa 320
Acrosoma spinea 326 Epeira riparia 329
Argiope 328 Epeira rugosa 326
Argiope transversa 330 Epeira sclopetaria 303
Argiope riparia 329 Epeira silvatica 300
Argyroepeira 331 Epeira solitaria 299
Argyroepeira hartorum 332 Epeira spinea 326
Cyclosa conica 321 Epeira stellata 319
Crrtarachne bisaccata 325 Epeira strix 30%
Epeira 298 Epeira thaddeus 309
Epeira alboventris 314 Epeira triaranea 315
Epeira angulata 399 Epeira trifolimm 306
Epeira carbonaria 315 Epeira trivittata 311
Epeira caudata 321 Epeira vulgaris 303
Epeira cinerea 302 Epeirinae 297
Epeira corticaria 300 Meta menardi 328
Epeira displicata 313 Micropeira radiosa 320
Epeira domiciliorum 312 Pachygnatha antumualis 337
Epeira fasciata 330 Pachygnatha brevis 336
Epeira foliata 318 Singa $3: 1$
Epeira gibherosa 317 Singa maculata 323
Epeira hortortm 332 Singa pratensis 332
Epeira infumata 319 Singa variabilis 329
Epeira insularis 309 Tetramnatha 3:2
Epeira juniperi 313 Tetragnatha caudata 395
Epeira lalbyrinthea 314 Tetragnatha extensa 333
Epeira marmorea 307 Tetragnatha grallator 334
Epeira mitrata 327 Tetragnatha laboriosa 33-1
Epeira notdmanni 301 Tetramentha straminea 335
Epeira patekardii 315 Tetragnathat vermiformis 333
Epeira parvula 31% Tetragnathinae 298
Epeira patagiata 305 Zilla montana 323
Epeira placida 316 Zilla X-notata 324

Vili.-The Diastatic Action of Saliva, as Modified by various Conditions, Studied Quantitatively. By R. H. Chittenden and Herbert E. Smith.

The chemical changes resulting from the action of morganized ferments are among the most interesting and important of those which occur in the animal organism. Ferment action plays such an important part in the chemical processes incident to life that definite knowledge of the conditions favorable and inimical to the action of any ferment occurring in the animal body must necessarily be of great physiological value.

Since Leuchs in 1831 discovered the diastatic action of saliva much has been learned regarding this digestive fluid, both as to its chemical action and the nature of the products formed. Still there has been lacking, until recently, definite knowledge of the conditions which influence the diastatic action of the salivary ferment, and it has been the object of the present investigation, taking advantage of previonsly acquired knowledge, to ascertain the exact influence of those conditions which suggest themselves as being most important in view of the destination of the ptyalin, and concerning which there has been of late a lack of agreement.

Method used in determining the rate of diastatic action.

In testing the rate of action of the salivary ferment we have in all cases employed quantitative methods, similar in their general nature to those previonsly used by one of us.* The amoment of reducing substances formed by the amylolytic action of the ferment, which for the sake of convenience we have calculated as dextrose, admit of accurate determination by means of the improved Allihn's method, and thus enable us to give a concise expression of the relative diastatic action, even in those cases where the differences are very slight. As recent experiments \ddagger have plainly indicated, the ultimate product of the dias-

[^10]taticaction of ptyalin is dextrose; the sugar intermediate between this body and the dextrins, and which is formed in much larger quantity is maltose, with a relative reducing power of 66 as compared with dextrose, 100 ; while the achroodextrins and other intermediate products have very small redacing power; consequently the reducing power of a digestive mixture must necessarily express the relative diastatic action of the ferment present, since increased action means an increased formation of reducing bodies, of which the final product has the highest reducing power. In this connection it is well to remember that diastase and ptyalin both convert only a limited quantity of starch into sngar or reducing bodies,* and that no matter how great the excess of ferment or the length of time the action is continued, the percentage of stareh changed into sugar does not ordinarily exceed 53 per cent. \dagger The general method employed in our work for testing the diastatic action of saliva was as follows: the volume of the digestive mixture was in every instance 100 c.c.; the amount of starch. present, 1 or 2 grams, previously boiled in a definite amount of water; the temperature of digestion $38-40^{\circ} \mathrm{C}$. ; the length of time generally 30 minutes. When the digestion was finished, diastatic action was at once stopped by boiling the mixture; when cold, the mixture was diluted with distilled water to 200 c.c. and filtered; 25 c.c. of the filtrate or $\frac{1}{8}$ th of the entire fluid was then precipitated with Fehling's solution according to Allihn's§ data and methorl; the rerluced copper was filtered through an asbestos filter in a small weighed glass tube and ignited directly in a current of hydrogen gas and weighed as metallic copper. By means of Allihn's tables of rednction equivalents the corresponding amount of sugar, calculated as dextrose, is casily obtained, from which the percentige amonnt of starch converted into reducing bodies can be computed, calling dextrose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{8}$, and the starch $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{6} \cdot \|$ The following experiment illustrates the accuracy of the method and the reliance which can be placed upon it; two solutions of 100 c.c., each containing 2 grams of starch and + c.c. of

[^11]filtered saliva were warmed at $40^{\circ} \mathrm{C}$. for 4 hours, then examined with the following results:

	Wt. Cu in one-eighth.	Total amount of sugar.	Starch converted into sugar.
I.	0.1530 gram.	0.6248 gram.	28.13 per cent.
II.	0.1523	0.6216	27.91

Relation of dilution to diastatic action.

It is a fact well understood that the chemieal action of a ferment is out of all proportion to the amount of ferment present; indeed, a given solution of a ferment can be diluted again and again withont any marked difference in its ehemical activity, or at least none at all proportionate to the degree of dilution. It is only when the dilution has been earried to the extreme limit that the relative power of the mixture ean be taken as a measure of the amount of ferment present.

The following experiments illnstrate the foregoing statement. Each digestive mixture was 100 e.e. in volume, and was warmed at $40^{\circ} \mathrm{C}$. for 30 minutes. The only variations in the different mixtures consisted in the amount of saliva and starch.

Series I.

	With 1 per cent. starch. Wt. Cu in one-eighth.		Total amount of sugar.
20 c.c. saliva,	0.0951 gram.	0.3872 gram.	Starch converted into sugar.
10	0.0878	$0.358 t$	34.87 per cent.
5	0.0809	0.3296	32.26
4	0.0710	0.2904	29.67
3	0.0635	0.2608	26.14
2	0.0452	0.1880	23.48
1	0.0178	0.0792	16.92
$\frac{1}{2}$	0.0080	0.0408	7.23
			3.66

With 2 per cent. starch.

20 c.c. saliva,	0.1784 gram.	0.7304 gram.	32.87 per cent.
10	0.1641	0.6704	30.18

Series II.

	Wt. Cuin one-eighth.	Total amount ot sugar.	starch converted into sugar.
4 e.c. saliva,	0.0721 gram.	0.2944 gram.	26.50 per cent.
2	$0 \cdot 0480$	$0 \cdot 1992$	$17 \cdot 93$
1	$0 \cdot 0211$	$0 \cdot 0920$	8.28

b. with 2 per cent. starch and 30 minutes at $40^{\circ} \mathrm{C}$.

4 c.c. saliva,	0.1006 gram.	0.4088 gram.	18.40 per cent.
2	0.0408	0.1704	7.67
1	trace		

	Wt. Cuin one-eighth.	Total amount of sugar.	starch conserted into sugar.
4 c.e. saliva,	$0 \cdot 057:$ gram.	$0 \cdot 3.352$ gram.	21.15 per cent.
2	(). 0213	0.0928	$8 \cdot 35$
1	$0 \cdot 009 \mathrm{I}$	$0 \cdot 0456$	$4 \cdot 11$

Series III.

	Wt. Cuin one-eighth.	Total amount of sugar.	Starch converted into sagar.
4 ce. saliva,	0.0650 gram.	$0 \cdot 2664$ gram.	23.98 per cent.
2	0.0313	$0 \cdot 1336$	12.01
1	$0 \cdot 0139$	0.0644	5.79

	b. with 2 per cent. starch and 30 minutes at $40^{\circ} \mathrm{U}$.		
4 c.c. saliva.	0.0769 gram.	0.3136 gram.	19.26 per cent.
2	0.0250	0.1080	4.86
1	0.0103	0.0504	2.27

c. with 2 per cent. starch and 4 hours at $40^{\circ} \mathrm{C}$.

4 c.c. saliva,	0.1530 gram.	0.6248 gram.	$28 \cdot 13$ per cent.
2	0.1058	0.4312	19.41
1	0.0681	0.2784	12.53

From these results it is seen that ouly when the dilution of normally alkaline saliva is as $1: 50$ or 100 does the diastatic action at all eorrespond to the amome of ferment present. The same is to be noticed in Griitzner's* experiments, where the principle employed by Gruenhagen in the estimation of pepsin was used; the amount of starch dissolved by the saliva being directly proportional to the amount of ferment only when very small quantities of saliva were employed and the time limited to 10 or 15 minutes. Increasing the amomet of starch beyond 1 per cent. tends to diminish somewhat the amount of sugar formed in a given time, when the dilution of the saliva is as 1:50 or 100, which fact agrees well with what we already know concerning the influence on ferment action of the clogging of digestive fluids in general by the products of digestion, or by the substance to be digested; series III, a and b. Increasing the length of time for the ferment to act, however, causes a corresponding increase in the amome of sugar formed, as is well seen in series III, e. It would not be at all impossible therefore by suitable dilutions to use this method as a means of determining the relative amonuts of ptyalin present in different salivary or pancreatic secretions. The following results, taken from those already given, in addition to others, lends favor to this view. All the experiments were made in

[^12]the usual way, and the results are expressed in percentage of stareh eonverted into sugar.

	1	2	3
$\begin{aligned} & 2 \text { c.e. saliva, } \\ & 1 \end{aligned}$	12.01 per cent.	$8 \cdot 35$ per cent.	$4 \cdot 73$ per cent.
	$5 \cdot 79$	$4 \cdot 11$	$2 \cdot 21$
	4	5	6
1 c.c. saliva,	6.93 per cent.	26.81 per cent.*	24.00 per cent.*
$\frac{1}{2}$	$3 \cdot 56$	$13 \cdot 72$	$11 \cdot 34$

The degree of dilution to be employed depends, of course, upon the amount of ferment present. We have usually diluted the saliva 5 or 10 times, and then added an amount of the diluted fluid corresponding to $0 \cdot 5-2 \cdot 0$ c.e. of saliva, which in the 100 e.c. of digestive mixture makes a dilution of from 50 to 200 . As we shall have oceasion to state later on, neutralized saliva needs even a greater dilution. The method certainly appears as advantageous as that proposed by Dr. Robertsł a few years ago, and has the advantage of giving gravimetric results, instead of being dependent upon the disappearance of a shade of color. In using the method with different solutions it will always be found necessary to exactly neutralize the ptyalin-containing solutions, before diluting them, since variations of alkalinity, even though infinitesimal in amount, may produce discordant results. Moreover, it is better to warm the ptyalin solution with the stareh for not longer than 30 minutes.
The amount of dilution which saliva will endure and still show diastatie action depends naturally npon the amount of ptyalin present in the secretion and also upon the reaction of the fluid, whether it be alkaline or neutral. The following series of experiments show the average of our results on this point.

Series IV.
Normally alkaline saliva, 1 per cent. starch.

1 c.c. saliva,	Wt. Cu in one-eighth.	Total amount of sugar.	Starch converted into sugar.
	0.0152 gram.	0.0704 gram.	6.33 per cent.
$\frac{1}{2}$	$0 \cdot 0057$	0.0272	$2 \cdot 44$
$\frac{1}{1}$	$0 \cdot 0037$	$0 \cdot 0176$	$1 \cdot 59$
10 10 20 20	$\left.\begin{array}{l}- \\ \text { trace } \\ \text { trace }\end{array}\right\}$ less than 1 per cent. of starch converted.		

It is thus seen that when the dilution is as $1: 250$, an appreciable

[^13]amount of starch is converted into sugar in 30 minutes at $40^{\circ} \mathrm{C}$. Even with a dilution of $1: 1000$ or 2000, a recognizable amount of sugar is formed under these conditions. This degree of dilution, however, cannot be considered as being the limit at which diastatic action will show itself, for with even greater dilutions, the starch is converted iuto soluble modifications, colored blue by iodine, without giving any recognizable amonnt of reducing substance; that is, in $\frac{1}{8}$ th of the digestive mixture. Longer continued action at 40° C. might yield some reducing substance; it would seem, however, from our experiments, that when a certain degree of dilution is reached, the action of the small amount of ferment, in contact with the larger amonnt of starch (1 gram) is devoted exclusively to converting the granulose into soluble stareh or other like body with nonreducing action. This agrees with the results obtained by Grïtzner,* who found that the nature of the products olbained by the action of ptyalin was dependent upon the intensity of the ferment action; with a small amount of ferment, erythrodextrin was the main product, while with a large amount of ferment, sugar was mainly formed. Diminishing the amount of starch in large dilutions of the saliva tends, as might be expected, to increase the amount of sugar formed.

Comparison of the diastatic action of neutralized and normally alkaline saliva.

Human mixed saliva, when freshly secreted, almost invariably pos sesses a distinctly alkaline reaction. Some time ago one of us published a series of experiments on this point, in which it was shown that the average alkalinity of 51 samples of human mixed saliva, expressed as sodium carbonate, was 0.080 per cent. The extreme variations of alkalinity in the saliva from 14 individuals amounted to 0.085 per cent. calculated as sodium carbonate ($0.144-0.059$ per cent).

We have had occasion to make determinations of alkalinity in 15 additional samples of saliva, all collected by one person. We give the results here, as affording additional data regarding the average alkalinity of this secretion. The alkalinity is calculated, as heretofore, in the form of sodimm carbonate. \ddagger The indicator userl was delicate litmus paper.

[^14]| Flltered saliva. | 0.2 per cent. llel used
 in neutralizing. | Amount of alkalinity. |
| :--- | :---: | :---: |
| 20 e.c. | 6.25 c.c. | 0.091 per cent. |
| 40 | 10.70 | 0.078 |
| 40 | 12.00 | 0.087 |
| 25 | 9.10 | 0.116 |
| 20 | 6.00 | 0.087 |
| 20 | 6.25 | 0.091 |
| 20 | 6.75 | 0.098 |
| 20 | 5.30 | 0.07 .7 |
| 40 | 12.50 | 0.091 |
| 20 | 7.00 | 0.102 |
| 40 | 12.20 | 0.088 |
| 20 | 7.80 | 0.113 |
| 20 | 6.80 | 0.099 |
| 20 | 8.30 | 0.120 |
| 20 | 7.60 | $0.1] 0$ |
| Average alkalinity of the 15 samples, 0.097 per cent. | | |

It was demonstrated some time ago by one of us* that neutralized saliva had as great a diastatic power as the munentralized or normally alkaline. In fact, the single result which we recorded plainly indicated a greater diastatic power on the part of the neutralized saliva, since from the digestion with normally alkaline saliva, one-tenth of the mixture gave 0.0905 gram metallic copper, while the sane quantity of the saliva nentralizer, gave under like conditions 0.0943 gram copper; thus showing that the alkaline saliva had converted 41.58 per cent. of the starch into sugar, while the same quantity nentralized had changed $+3 \cdot 28$ per cent. In these two experiments, however, the amomnt of saliva used was large, being one-fourth of the entire digestive mixture, viz., 25 c.c.

Recently Langley and Eves \dagger bave made the statement that "nentralized saliva converts starch into sugar much more actively than unneutralized salira," withont, however, giving any data. These are the only two statements recorded bearing on the relative diastatic action of the neutralized and normally alkaline secretion.

Our experiments, however, show that there is a very great difference in the action of ptyalin in nentralized and monentralized saliva; a difference which is more manifest when the saliva is greatly diluted and seemingly out of all proportion to the amount of alkali present, in cases where the dilution is $1: 100$ or more. The following experiments show the amomt of difference.

[^15]
Series V.

The saliva used in this series contained 0.091 per cent. alkali, calculated as sodium carbonate :

20 c.c. of the saliva were diluted to 100 c.c. and used in a.
20 c.c. of the same saliva were nentralized and then diluted to 100 c.c. and used in b.
a. normally alkaline saliva.

	Wt. Cu in one-eighth.	Total amount of sugar.	Starch converted into sugar.
4 c.c. saliva,	0.0652 gram.	0.2672 gram.	24.05 per cent.
2	$0 \cdot 0282$	$0 \cdot 1208$	10.87
1	$0 \cdot 0094$	0.0464	4.17
b. neutralized saliva.			
4 c.c. saliva,	$0 \cdot 0867$ gram.	$0 \cdot 3536$ gram.	31.83 per cent.
2	0.0730	$0 \cdot 2984$	26.72
1	0.0373	$0 \cdot 1560$	14.04

The difference in diastatic action in this instance, particularly where the dilution is as $1: 50$ and 100 , is very great, yet in the case of the greatest dilution of the unneutralized saliva the alkalinity of the digestive mixture is but 0.00091 per cent. calculated as alkaline carbonate. Moreover, there is a greater proportional diminution of diastatic action in this case, and also in the next greatest dilution where the amome of alkalinity is 0.00182 per cent., than in the presence of $0.0036+$ per cent. ; a fact due either to the greater susceptibility of the ferment to alkaline carbonate in a dilute solution or else to some modifying influence of the larger amount of albuminous matter present, a point which we shall return to later.

Carrying the dilution of the saliva still further we find that the difference between the diastatic action of the nentralized and nmentralized fluid, shows itself to the limit of decisive diastatic action.

Series VI.
This sample of saliva contained $0 \cdot 116$ per cent. of alkali calculated as sodinm carbonate. The percentages of starch converted into sugar during 30 minutes at $40^{\circ} \mathrm{C}$. alone are given.

Amount of saliva.	Alkali in the looee. of digestive mixture.	Alkaline saliva.	Neutralized saliva.
1 e.c.	0.00116 per cent.	$6 \cdot 33$ per cent.	$16 \cdot 34$ per cent.
$\frac{1}{2}$	0.00058	2.44	6.62
$\frac{1}{4}$	0.00029	1.54	2.07
$\frac{1}{10}$	0.00011	trace	result lost.
$\frac{1}{20}$	0.00005	trace	1.25 per cent.

Thus in a dilution of $1: 9000$ m the case of nentralized saliva, dias-
tatic action is still sufficiently pronomeed to convert 1.25 per cent. starch into sugar during 30 minutes warming at $40^{\circ} \mathrm{C}$.

The above results, indicative of such a marked susceptibility of the ferment in a dilute solution to the action of the alkali naturally present in saliva, suggest the possibility of there being a direct connection between the alkalinity of the natural secretion and its diastatic power. While the results already given plainly indicate that very slight changes in the alkalinity, everything else being equal, materially modify the diastatic power of the fluid; still the amount of ferment itself, as well as the amount of proteid matter, may vary in different salivas so much as to counterbalance the direct influence of changes in the alkalinity.

This, the results of our experiments seem to indicate, as we have been unable to trace out any direct connection between the natural variations of alkalinity and diastatic action.*

Tnfluence of different percentages of sodium carbonate on the diastatic action of saliva.

In 1882, while studying the influence of peptones on the diastatic action of alkaline saliva, \dagger data were then obtained showing a constant diminution of diastatic action in the presence of the alkaline carbonate: the conversion of starch into sugar being diminished in proportion as the percentage of alkali was increased. The digestions at 40° C. were then continued for 45 minutes and the ptyalin was present in large amount, 25 of the 100 c.c. of digestive mixture being undiluted, unneutralized saliva, thus making a very powerful diastatic fluid. We give the data then obtained in the percentage of starch or glycogen converted into sugar.

	a. Influence of 0.05 per cent. sodium carbonate.		
Saliva alone.	Saliva $+\mathrm{Na}_{2} \mathrm{Co}_{3}=0.05 \%$.	Difference.	
Glycogen,	28.68 per cent.	20.20 per cent.	8.48 per cent.

	b. Influence of 0.15 per cent. sodium carbonate. \ddagger		
	Saliva alone.	Saliva $+\mathrm{Na}_{2} \mathrm{Co}_{3}=0 \cdot 15 \%$.	Difference.
Starch,	40.23 per cent.	17.48 per cent.	22.75 per cent.
"	37.15	14.72	22.43
"	37.55	15.48	22.07
"	38.36	13.57	24.79
Glycogen,	28.68	9.40	

[^16]| | c. Influence of 0.30 per cent. sodium carbonate. | | |
| :---: | :---: | :---: | :---: |
| | Sitliva alone. | Saliva $+\mathrm{Ni}_{2} \mathrm{Co}_{3}=0.30 \%$. | Difference. |
| Starch, | 40.27 per cent. | 10.83 per cent. | 29.44 per cent. |
| " | 40.23 | 9.87 | 30.36 |
| $"$ | 37.15 | 9.52 | 27.63 |
| $"$ | 38.80 | 9.79 | 29.01 |
| $"$ | 37.55 | 10.01 | 27.54 |
| $"$ | 38.36 | 9.60 | 28.76 |
| Glycogen, | 29.11 | 6.93 | |

The action of the sodium carbonate is here very marked and very constant.

We have repeated this series of experiments in part, varying the conditions only by using uentralized saliva, so that the pereentages of alkali present might he exact.*

Series Vili.

Per cent. $\mathrm{Na}_{2} \mathrm{Co}_{3}$.	Starch converted.	Difference.
0	41.16 per cent.	
0.005	39.47	1.69 per cent.
0.025	34.84	6.32
0.050	29.81	11.35
0.150	17.88	23.28
0.300	10.88	30.28

It is evident from these results that the presence of a definite percentage of sodium carbonate will produce approximately a constant diminution in the diastatic action of the saliva. This result, however, is constant only when the saliva acts in the above dilution. Diminish the amount of ferment-or rather dilute the saliva-and then the above percentages of alkali produce quite a different result. The above results were obtained where the dilution of the saliva was as 1:4. Adding now neutralized saliva to the alkaline mixtures of starch and water in such proportion that 10 c.c. of the original saliva are present in 100 c.c. of digestive mixture; i. e., a dilution of $1: 10$, the results are different.

The following figures were obtained with the above dihution, the mixtures being warmed at $40^{\circ} \mathrm{C}$. for 30 minutes.

	Selies IN.	
Per cent. $\mathrm{Na}_{2} \mathrm{Co}_{3}$.	Wt. Cu in one.eighth. Total amt. sugar formed.	
0	0.0998 gram.	0.4064 gram.
0.005	0.0898	0.3664
0.025	0.0437	0.1816
0.050	0.0277	0.1184
0.100	0.0182	0.0808
0.300	0.0105	0.0504
0.500	0.0091	0.0448

[^17]These figures lead to the following percentages of starch converted into sugar under the different degrees of alkalinity.

Per cent. $\mathrm{Na}_{2} \mathrm{Co}_{3}$.	Starch converted.	Difference.
0	36.57 per cent.	
0.005	32.98	3.59 per cent.
0.025	16.35	20.22
0.050	10.66	25.91
0.100	7.27	29.30
0.300	4.53	32.04
0.500	4.03	32.54

By comparing the two preceding columns of differences it is very manifest that the alkaline carbonate has a much greater retarding action on the more dilute saliva than on the stronger solution; very noticeably so in the mixtures containing 0.025 and 0.050 per cent. of the alkaline salt.

By diluting neutralized saliva still more, and then using quantities of the fluid equal to 2 c.c. of the original saliva, making in the 100 c.c. of digestive mixture a dilution of $1: 50$, even 0.005 per cent. of sodium carbonate is sufficient to retard the diastatic action of the ferment almost completely; thns, in one experiment with the above amount of saliva in the presence of 0.005 per cent. sodium carbonate but $4 \cdot 03$ per cent. of the starch was converted into sugar in 30 minutes at $40^{\circ} \mathrm{C}$., while the same amount of saliva alone converted 27.08 per cent. of the starch into sugar. By increasing the percentage of alkaline carbonate the diastatic action was stopped completely.

It is thus evident that the percentage of alkaline carbonate which absolutely or to a certain extent hinders the diastatic action of saliva can be designated only for a definite mixture, and not in a general sense. Langley and Eves* state that sodium carbonate of 0.0015 per cent. causes a retardation in the action of ptyalin; our experiments with umeutralized saliva diluted, plainly show that even much smaller percentages of alkalinity may decidedly retard the action of the ferment, while in similarly diluted saliva 0.005 per cent. of sodium carbonate may prevent diastatic action almost entirely.

Again Langley and Evest state that the "amylolytic action of saliva becomes less the more alkaline salt there is in the solution, the rate of decrease is, however, slow compared with that which occurs when hydrochloric acid is added in similarly increasing quantities." The rate of decrease, however, as our experiments plainly show, is dependent greatly upon the amount of dilution.

Destruction of salivary ptyalin by soclium. carbonate.
To how great an extent is the retarding influence of sodium carbonate due to destruction of the ferment? Langley and Eves* state that "sodium carbonate has a very slight destructive action on ptyalin, its retarding power is out of all proportion to its power of destruction."

The following experiments demonstrate the exact action of the sodinm carbonate.

Series X.
70 c.c. of filtered saliva (the same saliva as used in Series IX), were exactly nentralized with 0.2 per cent. HCl and diluted to 140 c.c.

The following mixtures were then prepared :

	1	2		3		4		
Diluted saliva,	20 c.c.	20 c.c.		20 c.c.		20 c.c.		
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ sol.,	0	20 "	0.1\%	10 "	0.6%	20 *	0.6\%	
$\mathrm{H}_{2} \mathrm{O}$.		0		$10^{\prime \prime}$		0		0
Per cent. $\mathrm{Na}_{2} \mathrm{Co}_{3}$,	0	$0 \cdot 05$		$0 \cdot 15$		$0 \cdot 30$		

These were warmed at $40^{\circ} \mathrm{C}$. for 30 minntes, then nentralized with the amounts of dilute acid given below, water and starch added, and the mixtures again warmed at $40^{\circ} \mathrm{C}$. for 30 minutes.

In the above digestive mixtures the ultimate dilution of the saliva is the same as in series $L X, 1: 10$, and being the same saliva, the above results are directly comparable with those of series IX: Warming saliva of the above strength with 0.05 and 0.15 per cent. sodium carbonate for 30 minutes canses no destruction of the ptyalin whatever, as the results of experiments 2 and 3 indicate, consequently any diminished diastatic action in the presence of the above percentages of alkaline carbonate must be due to a simple retardation of

[^18]the action of the ferment and not to its destruction. On the other hand, 0.3 and 0.5 per cent. sodium carbonate under like conditions and with the same strength of saliva cause a marked lestruction of the ferment, as the results of experiments 4 and 5 plainly show.

We have repeated the above series of experiments with a saliva, neutralized and diluted 5 times, using in each experiment 10 c.e. of the diluted fluid, equal to 2 c.c. of the original saliva. The only other deviation from the conditions already given consisted in warming the saliva with the alkaline carbonate for 1 hour instead of 30 minntes. We will not give the details of the experiment, as the results were mostly negative. With this amount of saliva, 0.15 per cent. sodium carbonate almost completely destroyed the ferment in 1 hour's warming at $40^{\circ} \mathrm{C}$., and even 0.05 per cent. of the alkaline carbonate showed under these conditions a rery great destructive action; thus, after heating the diluted saliva with 0.05 per cent. sodium carbonate for 1 hour at $40^{\circ} \mathrm{C}$., and then neutralizing the mixture it was able in 30 minutes to convert but $5 \cdot 69$ per cent. of starch into sugar, while the same quantity of saliva simply warmed with water, converted under like conditions 27.08 per cent. of starch into sugar.* Under these circmmstances, then, the destructive action of di!ute sodium carbonate is very great. To what is due this great difference in the action of sodium carbonate of the same strength? Probably to the presence of the larger amonnt of albuminous matter which in the less diluted saliva possibly combines with the alkaline carbonate. It would follow, moreover, from our results, that any proteid compound formed, has in itself no destructive action on the ferment, even to a slight extent. 0.005 per cent. sodium carbonate eanses no destruction of the ferment in 1 hour's warming at $40^{\circ} \mathrm{C}$. ; that is, in saliva of this dilution.

Infuence of proteid matter on the diastatic action of saliva in neutral solutions.

It was formerly demonstrated by one of ust that the presence of 1 per cent. peptone tended to increase the diastatic action of saliva in a neutral solution to such an extent that on an average about 4 per

[^19]cent. more starch was converted into sugar during 45 minutes at 40° C.; this with 25 c.c. of saliva in 100 c.c. of the digestive mixture. This effect we attributed to a direct stimnlating action on the part of the proteid matter. Langley and Eves,* however, object to this conclusion, although they bring forward no facts to prove the contrary. Considering that litmus will not detect less than 0.001 per cent. acid or alkali they state that there may be in the nentralized fluid an excess of acid or alkali to this extent, and if, as may well be the case, ptyalin acts best in a neutral solntion, the effect of the peptone might be due to its putting hors de combat the slight excess of acid or alkali which remains on apparent nentralization. But as Langley himself has shown, the proteid matter naturally present in 25 c.c. saliva, or even much less, is far more than sufficient to combine with and render inert any such amonnt of free acid or alkali. We see no other possible explanation of the action of peptones on the diastatic action of saliva in a nentral solution than a direct stimulation of the ferment. Moreover, Langley and Eves have found that when nentralized saliva is diluted a hundred times, peptone is still able to increase the rate at which it converts starch into sugar, from which they are forced to conclude that the small amount of acid or alkali which may be present, cannot exert, in such a dilution, any retarding inflnence. We present the following additional results confirmatory of our previous experiments.

In our present experiments we have, however, used much less saliva, and also smaller percentages of peptone.

Series XI.

20 c.e. of filtered saliva were neutralized and then dilnted to $100 \mathrm{c} . \mathrm{c}$.
0.8 gram of pure albumin-peptone was dissolved in water, made exactly nentral with $\mathrm{Na}_{2} \mathrm{Co}_{3}$ and the solntion diluted to 100 e.c.

10 c.c. of the diluted saliva were employed in each digestion, and of the peptone solution quantities equivalent to $0.05,0.1$, and 0.2 gram of peptone. Length of digestion, 30 minntes.

Per cent. peptone.	Wi. Cu in one elghth.	Total amt. sugar.	starch couverted.
0	0.083 .4 gram.	0.3400 gram.	30.61 per cent.
0.05	0.0875	0.3568	32.11
0.10	0.0868	0.3544	32.01
0.20	0.0873	0.3560	32.04

Here, with the smatler amome of ferment, the increase is not so great as with the larger quantity of saliva and with the longer

[^20]period of digestion; still, the amonnt of starch converted is increased on an arerage ahont 1.50 per cent. It is interesting to note that moder these conditions the full effect of the proteid matter is produced by even 0.05 per cent. Langley and Eves fomd the maximam effect with salisa ten times dilnted to be produced by about 0.1 per cent. peptone. In our experiment, however, the dilntion of the saliva in the digestive mixtme is $1: 50$.

Influence of proteid matter on the diastatic action of saliva in alkuline solutions.
It was previously demonstrated by one of us that the presence of 1 per cent. peptone in a digestive mixture containing as per cent. saliva and 0.3 and 0.15 per cent, sodium carbonate respectively, tended to nearly donble the diastatic action, bringing it up almost to the action of saliva ummixed with alkaline carbonate.

We give here a few additional experiments bearing on this point.
The very noticeable difference in the action of small percentages of sodium carbonate on the diastatic activity of moderately dilute and very dilute saliva at once suggests the possibility of some connection between the dilution and the reduced percentage of proteid matter. What, now, is the influence of small amounts of peptone on very weak alkaline solutions of saliva? We will give the results of one series of experiments in answer to this question.

Series XII.

20 c.c. of saliva with an alkalinity equal to 0.110 per cent. sodium carbonate were diluted to 100 c.c., 10 c.c. of the diluted saliva were used in each digestion of 100 c.c.; consequently the alkalinity of the digestive mixture was equal to 0.0022 per cent. sodium carbonate. Neutral peptone was added in varying quantities. The mixtmres were warmed at $40^{\circ} \mathrm{C}$. for 30 minutes.

Per cent. peptone.	Wt. Cu in one-eighth.	Totalamt. sugar.	Starch converted.
0	0.0761 gram.	0.310 .4 gram.	27.94 per cent.
0.05	0.0823	0.3352	30.18
0.10	0.0841	0.3424	30.82
0.20	0.0853	0.3480	31.33

The same saliva neutralized converted 30.61 per cent. of the starch into sugar; consequently the neutral peptone ($0 \cdot 2$ per cent.) cansed the alkaline saliva to show a diastatic action considerably greater than the neutral saliva, but not equal in this case to the action of the same percentage of peptone on the nentralized saliva. Compare series xi, made with the same saliva.

Still other experiments of the same nature have shown like results, and even more marked. Thms, while nentral saliva withont peptone converted in one instance $18 \cdot 16$ per cent. starch into sugar, a like quantity of the normally alkaline saliva ($=0.002$ per cent. $\mathrm{Na}_{2} \mathrm{Co}_{3}$ in the digestive mixture) with $0 \cdot 1$ per cent. peptone converted 31.90 per cent. starch into sugar.

Increasing the percentage of carbonate to a point where previous experiment had shown almost complete stopping of the action of the ferment, it was found that $0 \cdot 1$ per cent. of neutral peptone would, in the above dilution, bring the diastatic action up, almost to that of the neutral saliva.

Series XIII.

Thus, 20 c.c. of saliva were nentralized and diluted to 100 c.c., 10 c.c. used in each digestion.

	$0 \mathrm{Na}_{2} \mathrm{CO}_{3}$	$0.005 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$	$0.005 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$
	0 Peptone.	0 Peptone.	0.10% Peptone.
Wt. Cu in one-eighth,	0.0803 gram.	0.0181 gram.	0.0708 gram.
Total amt. sugar,	0.3272	0.0800	0.2896
Starch converted,	29.45 per cent.	7.20 per cent.	26.07 per cent.

With 0.025 and 0.050 per cent. sodium carbonate, 0.1 per cent. peptone availed but little: there was slight diastatic action, but not enough sugar formed to make the determination of it of any value. These results would seem to indicate that one action of the peptone in an alkaline solution is to combine with the alkaline carbouate and form a compound of quite different power: thus, with 0.050 per cent. sodium carbonate a corresponding larger percentage of peptone is required to increase the diastatic power. In addition to this action, howerer, there is still manifest the direct stimnlating action of the proteid matter on the ferment; seen in one case in the increased percentage of sugar formed in the alkaline solution over the amount formed in nentral solution by the same saliva under like conditions.

As to the union of peptone and the alkaline sarbonate we hare a strong indication of a combination in that the presence of peptone tends to diminish somewhat the destructive action of small percentages of sorlimm earbonate in diluted saliva.

Thus, while 10 c.c. of nentralized, dilute saliva ($1: 5)$ warmed for 1 hour with 0.05 per cent. sodium carbonate converted after neutralization $25^{\circ} 05$ per cent. starch into sugar, the same amount of saliva warmed for the same length of time with the same percentage of sodium carbonate, plus 0.4 per cent. peptone converted after neutralization 32.68 per çent. of the stareh.

The peptone present had evidently in some way prevented the destructive action of the alkaline carbonate, and the most plansible explanation seems to be the probable formation of an alkaline-proteid borly.

> Influence of fiee acid and of acid-proteid matter on the diastatic action of saliva.

The influence of dilute acid solutions on the diastatic action of saliva is naturally a point of considerable physiological importance. In view of the rapid passage of the salivary secretions into the stomach, we need to thave accurate knowledge of the exact influence of free acid and acid-reacting flnids on the ferment and its diastatic activity.

In considering this question we do not need now to take into account the older observations of Jacubowitsch, Lehmann, Schiff, Watson, Brïcke, Hammarsten and others, since these led to no agreement of opinion and more recently acquired knowledge has rendered necessary different methods of procedure.

In 1881 it was announced by one of us* that the ferment of saliva was destroyed on being warmed for two hours with gastric juice containing 0.2 per cent. hydrochloric acid; also that the same treatment with 0.2 per cent. hydrochloric acid alone caused great destruction of the ferment, so that on nentralization diastatic action was greatly diminished. At the same time it was pointed out that much smaller percentages of acid, even 0.025 per cent., \dagger diminished the diastatic action of the ferment very materially. Shortly after this, similar results were obtained independently by Langley, + who in an interesting paper on the destruction of ferments in the alimentary canal, pointed out that ptyalin from the parotids of a rabbit was destroyed by digestion with a small amount of gastric juice, and also that weak solutions of the ferment were more or less destroyed by heating at $40^{\circ} \mathrm{C}$. with 0.014 per cent. hydrochloric acid. In comparing these latter experiments with the preceding it is to be remembered that the former were made with 25 c.c. of filtered human saliva, a niuch stronger solution doubtless, both as regards the ferment and the albuminous matter present.

Later it was pointed out by one of us, that peptones have a very

[^21]March, 1885.
decided influence on the diastatic action of saliva in acid solutions; that while the presence of 0.025 per cent. hydrochloric acid prevented the conversion of but 3.50 per cent. of the starch into sugar, the presence of 1 per cent. peptone allowed the conversion of 48.85 per cent. of the starch, 7 per cent. more than the saliva alone would convert under like conditions; a fact which would indicate something more on the part of the proteid matter, than a mere union of the peptone and acid. Undoubtedly there was a combination of the peptone and acid, but in addition there was manifested the direct stimulating action of the proteid matter. At the time these experiments were made, however, we were unaware of Danilewsky's* method of testing for free acid with tropeolin 00, by which he proved the union of acids with various forms of proteid matter; compounds acid to test papers, but not containing free acid. Falk likewise noticerl the influence of peptones on diastatic action, in an acid solution of malt intusion; thus by adding a small amount of 0.0135 per cent. hydrochloric acid to an infinsion of malt and this to some starch paste, no reaction for sugar could be obtained, but by adding the same proportion of acid and some peptone, then the sugar reaction soon appeared. This fact Falk considered as evidence of the union of the acid and peptone.

In view of these results we have repeated some of our previous work, under different conditions, trying many additional experiments, especially as in a recent paper on the amylolytic action of saliva, Langley and Eves \ddagger have arrived at some conclusions not in accord with our results.

a. Influence of acirl-proteid matter.

We have used the tropacolin test for the detection of free acid, whenever it has heen necessary in our work, employing the method as recommended by Danilewsky. The tropeolin 00 was dissolvod in methyl alcohol (saturated solution) and when a test for free acid was to be made, drops of the alcoholic solution were allowed to evaporate on a porcelain plate at $40^{\circ} \mathrm{C}$., and then while still at $40^{\circ} \mathrm{C}$., a drop of the fluid to be tested was added and allowed to dry. Free hydrochloric acid canses the dry residue to take on a violet color. We have made a number of trials to ascertain how small a pereentage of free hydrochloric acid can be detected by this test. Using a

* Centralth. Med. Wiss., 1880.
† Virchow's Archivs, Ixxxiv, 1881, p. 130.
\ddagger loe. cit.
standard solution of hydrochloric acil of known strength,* we have found that 0.003 per cent. of this acid can be detected with certainty, a drop of such a mixture giving a distinctly recognizable violet color. A smaller percentage camot be recognized and we have therefore invariably dellucted the above amome in our varions tests for free acid.

The amount of proteid matter naturally present in saliva and which is capable of combining with acids, is apparently quite constant. Langley and Eves found as a mean of several observations that 5 c.c. of filtered, nentralized saliva contained proteids capable of combining with 2 c.c. of $0 \cdot 1$ per cent. hydrochloric acid. We have found as a mean of eight determinations that 20 c.c. of filtered, neutralized saliva contained proteids capable of combining with $7 \cdot 74$ e.c. $0 \cdot 1$ per cent. hydrochloric acid. In an attempt to ascertain approximately how much proteid matter this amount of acid signified, we took the results of our experiments with peptones, in which we found that 1 gram of pure neutral peptone required $48^{\circ} 0$ c.c. 0.1 per cent. hydrochloric acid to saturate it. Consequently 1 c.c. of 0.1 per cent. acid woukd combine with 0.0208 gram peptone, and assuming that the combining power of the proteids present in saliva is the same as that of peptones, the 20 c.c. of saliva would contain $0 \cdot 16099$ gram proteid matter, equal to 0.804 per cent.; a result which at once shows that the combining power of the proteids of saliva and peptone must be quite different, or as is more probable, that considerable of the acid added, is used up in reacting with the phosphates of the alkalies present in the saliva.

Saliva, as a rnle, loes not contain much more than 0.5 per cent. solid matter, and Hammerbacher has found in human mixed saliva $0 \cdot 139$ per cent. albumin and ptyalin. \dagger

A comparison of the diastatic action of nentral salica considerably diluted, and similarly dilnted saliva in which the proteids present have been saturated wit! acid, shows at once that acid-proteid matter, even though present in but small quantity, has a distinctly stimulating action on the salivary ferment.

The following experiments will illustrate this point and also show the extent of the stimulation.

Series XIT.

A. 40 c.c. filtered saliva were nentralized and then diluted to 200 c.c.

[^22]B. 40 c.c. of the above dilnted saliva required 6.8 c.c. 0.05 per cent. IICl to saturate the proteids present $=0.0074$ per cent. combined HCl .

Two digestions each were made with A and B, using quantities of the above salivas equivalent to 4 and 2 e.c. of the original saliva.

It is seen that the addition of the acid in this instance canses a very decided increase in the diastatic activity of the saliva. The amount of combined acid present in the 100 c.c. of digestive mixture in the two cases was 0.0017 and 0.0008 per cent. respectively, yet the presence of this small amonnt of combined acid manifestly acts as a stimulant to the diastatic ferment.* Even still smaller percentages of acidproteid matter have an equally decided action on the salivary ptyalin. The following series of experiments illustrate this point and at the same time are confirmatory of the preceding one.

Series XV.

A. 40 c.c. filtered saliva were nentralized and diluted to 200 c.e.
B. 50 c.e. of the above diluted saliva required $4 \cdot 75$ c.e. 0.05 per cent. HCl to saturate the proteids. The solution was distinctly acid to litmus paper and contained 0.0043 per cent. combined HCl .

Four digestions were made with both A and B, using quantities of saliva in each ease equivalent to $4,2,1$ and 0.5 c.c. of the original saliva.

		Wt. Cu in one-elghth.	Total amt, sugar formed.
20	c.e. A,	0.0925 gram.	0.3768 gram.
21.9	B,	0.0959	0.3912
$10 \quad$ c.c. A,	0.0827 gram.	0.3368 gram.	
$10.95 ~ B$,	0.0876	0.3576	
5	c.c. A,	0.0671 gram.	0.2744 gram.
5.5	B,	0.0751	0.3064
2.5 c.c. A,	0.0305 gram.	0.1296 gram.	
2.75	B,	0.0375	0.1568

[^23]| | sitarch converted. | | Starch converted. |
| :---: | :---: | :---: | :---: |
| 20 c.c. A, | 33.85 per cent. | 10 c.c. A, | $30 \cdot 32$ per cent. |
| $21.9 \quad B$, | 35.22 | 10.95 B, | 32.19 |
| Increase, | $1 \cdot 37$ per cent. | Increase, | 1.87 per cent. |
| 5 e.c. A, | 24.69 per cent. | 2.5 c.c. A, | $11 \cdot 68$ per cent. |
| 5.5 B, | 27.58 | 2.75 B, | $14 \cdot 10$ |
| Increase, | 2.89 per cent. | Increase, | 2.42 per cent. |

Here the same results are to be seen as in the preceding experiment, although the amount of proteid matter is mnch less. In both series of experiments it is to be noticed that as the percentage of combined acid is diminished the difference between the diastatic activity of the nentral solution and the corresponding acid solution is increased, at the same time it is to be seen that in the first series of experiments where the percentage of proteid matter is larger there is a greater increase in the conversion of starch with the 23.4 c.c. of acid-reacting saliva than with the 21.9 c.c. of the acid-reacting flud of the second series of experiments with its smaller percentage of proteid matter.

In the last series of experiments where $21 \cdot 9$ c.c. of B are used the amount of combined acid in the digestive mixture is but $0.0009+$ per cent. HCl , so that where the smaller amounts of acid-reacting saliva are used the percentage amount of combined acid is very small indeed.

Increasing the amount of saliva used and thereby the percentage of acid-proteid matter brought us finally to a point where the acidproteid matter failed to stimulate the diastatic action of the ferment and even began to show a tendency to retard its action. The following series of experiments, using saliva wholly undiluted, illustrates this point.

Series XVI.

100 c.c. of filtered saliva were neutralized requiring 32 c.c. $0 \cdot 2$ per cent. $\mathrm{HCl}=A$.
$52 \cdot 8$ c.c. $A=40$ c.c. of the original saliva required $12 \cdot 15$ c.c. $0 \cdot 1$ per cent. HCl to combinc with the proteids, making saliva B; the fluid was distinctly acid to litmus and contained 0.0187 per cent. combined acid. Three digestions were made with both A and B, using quantities of the fluids equal to 20,10 and 5 c.c. respectively of the original saliva.

	Wt. Cu in one-eighth.	Total amt. sugar.	
26.4 c.c. A,	0.1083 gram.	0.4408 gram.	
32.48	B,	0.1065	0.4336
13.2	0.1024 gram.	0.4168 gram.	
16.24	B,	0.1087	0.4424
6.6	c.c. A,	0.0948 gram.	0.3864 gram.
8.12	B,	0.1031	0.4192

	Starch converted.	Combined HCl in the 100 c.c. digestive mixture.
26.4 c.c. A,	$39 \cdot 68$ per cent.	0
$32.48 \quad B$,	38.96	$0 \cdot 00608$ per cent.
Decrease,	0.72 per cent.	
13.2 c.c. A,	37.52 per cent.	0
16.24 B,	39.73	0.00304 per cent.
Increase,	2.21 per cent.	
6.6 c.c. A,	34.79 per cent.	0
8.12 B,	37-74	0.00152 per cent.
Increase,	$2 \cdot 95$ per cent.	

In this serics of experiments where the percentage of combined acid in the digestive mixture is much greater than before, the same increase in diastatic action is noticed. With the largest quantity of saliva however where the amount of combined acid is 0 ung per cent. we seem to have reached a point where the acid-proteid matter ceases to stimulate and begins to retard the action of the ferment. That this is actually the case we have proved by another experiment confirmatory of the preceding one, using in the digestion however two grams of starch instead of one.

Thus while an amount of neutral saliva, equal to 20 c.c. of the original secretion converted 39.08 per cent. starch into sugar, the same amonnt of saliva having all of its proteid matter combined with acid converted under the same conditions 38.21 per cent. of the starch, a decrease of 0.87 per cent; in this case however the amomet of combined acid present in the 100 c.e. of digestive mixture was 0.008 per cent.

It thus seems plainly proven that up to a certain percentage the presence of acid-proteid matter in the saliva tends to decidedly stimulate its diastatic action. We cannot therefore agree with Langley and Eves that ptyalin asts best in every instance in a neutral solntion, for our results certainly show an increased action of the ferment in the presence of the acid-proteids, except where the latter are present in comparatively large amount.

The only possible fallacies which suggest themselves here are traces of undetectable alkali in the starch and the presence of phosphates of calcium or magnesimm. This result moreover makes clear many statements previously recorded which would otherwise be difficult of explanation. Thus it has been recorded by Astaschewsky,* that the saliva of the parotid gland possesses a very faint acid reac-

[^24]tion and that the maximum of the diastatic action of parotid saliva corresponds with the strongest acid reaction; but in these observations doubtless the acid reaction was in every case due to acid-proteids and not to free acid. Again it was found by one of us* that the presence of 0.005 per cent. HCl decidedly increased the diastatic action of saliva, but while the observation was correct the result was wrongfully attributed to 0.005 per cent. free acid when it should have been attributed to the same percentage of combined acid, where doubtless the proteid matter was not wholly saturated. Likewise Watson's \dagger oft-quoted result, where the addition of a drop of strong acid to saliva gave him an increased diastatic action, was doubtless due to the acid-proteid matter formed and not to free acid, though it may have been due to partial or complete neutralization.

We endeavored to ascertain whether the acid-proteid matter formed by the addition of acid to nndiluted saliva would have any destructive action on the diastatic ferment when warmed at $40^{\circ} \mathrm{C}$. Of course only a slight action, if any could be expected, still it seemed of sufficient importance to warrant the experiment. Accordingly two mixtures were prepared as follows:

	A.	B.
Saliva,	20 c.c.	20 c.c.
$\mathrm{HCl} 0.2 \%$ to neutralize,	$6 \cdot 8$	$6 \cdot 8$
" " combine with proteids,		$3 \cdot 2$
$\mathrm{H}_{2} \mathrm{O}$,		$13 \cdot 2$
	$\underline{400}$ c.c.	$\underline{40 \cdot 0}$ c.c.
	Neutral.	$0.016 \% \mathrm{HCl}$ combined

These two solutions were warmed at $40^{\circ} \mathrm{C}$. for 1 hour, then weutralizing and equalizing \ddagger mixtures were added, after which starch and water to 100 c.c. The results were in A a conversion of 38.68 per cent. of the starch into sugar, and in B a conversion of 38.26 per cent., so that while there may have been some little destruction of the ferment, it is plain that the diminished action noticed in the two preceding cases in the presence of the larger percentages of acidproteid matter was probably due to simple retardation, since the percentage of combined acid was not more than half that in the above experimeut.

We have studied the influence of acid-proted matter on salivary

[^25]digestion still further by experimenting likewise with peptones, and in studying the influence of acid-peptones on the action of the ferment we have been impressed with the striking effect of very minute quantities of acid on the ordinary action of peptones, increasing it very decidedly. It has already been shown that the presence of $0.05,0.1$ and 0.2 per cent. of neutral peptone produces, in neutral solutions, a like increased diastatic action; with 0.5 per cent. peptone the increase is as much as with 0.2 per cent. ; that is, in the case of saliva considerably dihuted. With acid-peptones, however, the effect produced is quite different, and the amount of combined acid necessary to produce this different effect is quite small.

Peptones as usually prepared contain a small amount of combined acid. The sample we used required per gram 0.014 gram $\mathrm{Na}_{2} \mathrm{Co}_{3}$ to make it neutral; this would be equivalent to 0.00964 gram HCl . Consequently the percentage of combined acid in the peptone, assuming it to be hydrochloric acid, would be 0.964 per cent. With such an acid-peptone the following experiments were tried.

Series XVII.

20 c.c. saliva were neutralized and diluted to 100 c.c.; of this solntion 10 c.c., equal to 2 c.c. of original saliva were used in each digestion. Four experiments were tried, in three of which 0.050 gram, 0.100 gram and 0.200 gram of the above acid-peptone were added. Following are the results, after warming the mixtures at 40° C. for 30 minutes.

Per cent. peptone.	Wt. Cu. in one-eighth.	Total amt. sugar formed.	Starch converted.
0	0.0766 gram.	0.3128 gram.	28.16 per cent.
0.05	0.0873	0.3560	32.05
0.10	0.0897	0.3656	32.91
0.20	0.0929	0.3784	34.21

Comparing these results with those obtained by similar percentages of nentral peptone the difference is sufficiently striking, and yet the percentage of combined acid in the digestive mixture, where there is present 0.20 gram of acid-peptone, is but 0.0019 per cent. ealculated as HCl .

Experimenting with peptones completely satmated with acid, and in this case with what was known to be hydrochlorice acid, results similar to the above were obtained, with, however, sereral suggestive deviations. The following series of experiments will serve to illastrate the main points of interest.

Series XVIII.
40 c.c. filtered saliva were neutralized and diluted to 200 c.c. ; 10 c.c. of this diluted fluid were used in each experiment.

A standard solution of peptone saturated with hydrochloric acid was also prepared.

The following percentages of peptone and combined acid were contained in the different digestive mixtures of 100 c.c.

	1	2	3			4	5
Peptone,	0	0	0.01%	0.020%	0.040%	0.060%	0.080%
Combined HCl,	0	$0.0006 \%^{*}$	0.00057%	0.00115%	0.0023%	0.00345%	0.0046%

Following are the results of the digestions:

	Wt. Cu in ove-eighth.	Total amt. sugar.	Starch converted.
No. 1	0.0872 gram.	0.3560 gram.	31.85 per cent.
2	0.0896	0.3656	32.91
3	0.0901	0.3672	33.06
4,	0.0935	0.3808	34.28
5	0.0892	0.3640	32.77
6	0.0775	0.3160	28.45
7	0.0495	0.2048	18.43

It is to be noticed, first, that in this series of experiments the peptones, being completely saturated with acid, are present in much smaller percentages proportionally than the combined acid is, and the effect produced is a diminished diastatic action in the case of Nos. 6 and 7 , in the presence of an amount of combined acid which, in the case of the proteids naturally present in saliva, has no retarding action whatever, but on the contrary a stimulating action. The addition of a larger amonnt of peptone to Nos. 5, 6 and 7, for example, the percentage of acid remaining the same, tends to bring up the diastatic action very decidedly.

It would appear from these results, moreover, assuming that the combining power of peptone is the same as the proteids present in saliva, that the presence of say 0.003 per cent. combined HCl in the form of saturated acid-peptone has a retarding action, while the same percentage of combined HCl in the form of saturated salivary proteids, has, in the case of saliva of the same dilution, a decided stimulating action. At the same time it is to be remembered that when acid is added to saliva some considerable acid may be used by the inorganic salts with formation of acid phosphates, for example. These results, moreover, indicate that such is doubtless the case. Increasing the percentage of peptone to say 1 per cent. admits of the addition of larger amounts of hydrochloric acid, without partic-

[^26]ularly retarding the action of the ferment; thus, as Langley and Eves state, " 0.0075 per cent. hydrochloric acid may be added to saliva diluted 10 or 20 times, provided 1 per cent. peptone be present, and yet its action on starch be about equal to that of the saliva without peptone or acid."

Again it would appear that small percentages of acid-proteid matter, either peptones or the albuminous bodies present in saliva, tend to increase the diastatic action not only beyond the natural action of the saliva, but also somewhat beyond the action of the saliva plus the same percentage of neutral peptone. Thus, while the presence of a few hundredths of 1 per cent. of nentral peptone in saliva diluted $1: 50$ eansed about 1.5 per cent. increased conversion of starch, acid-peptone cansed in 30 minutes $2 \cdot 17$ per cent. increased conversion. Again, as has been seen, the acid-proteids of saliva cause a like increase. Large percentages of acid-proteids, however, in which the albuminous matter is completely saturated, distinctly retard the diastatic action.

These results harmonize in a gencral way with the previons results obtained by one of us,* in which it was found that the presence of 1 per cent. peptone in an acid-reacting flnid, which by itself almost completely stopped the diastatic action of the saliva, increased the diastatic action of the ferment above the action of the nentral saliva and also above the action of the nentral saliva plus the 1 per cent. of nentral peptone.

We next endeavored to ascertain how much of the retarding action of the acid-peptone is due to destruction of the ferment. Withont giving details we have fonnd that with saliva ten times diluted there is a noticeable destruction of the ferment in the presence of 0.028 per cent. of combined acid, althongh it is not great. In this case it is to be minderstood that the amount of peptone present is only such as would furnish this percentage of combined acid. The following percentages of starch converted (after nentralization and equalization) show the amount of destruction under the different conditions.

[^27]It is thus manifest from our results that the retarding influence of the larger percentages of acid-peptones is out of all proportion to their power of destruction. Still larger percentages of acid-saturated peptones produce a much greater destruction. Thus, by warming 10 c.c. of a neutral dilute saliva $(1: 5)$ with a solution of peptone saturated with acid, in such proportion that the mixture contained 0.430 per cent. combined HCl , there was in 30 miontes an almost complete destruction of the ferment.

b. Influence of fiee acid.

In view of the fact that some time ago one of us* was of the opinion that small percentages of acid \dagger tended to increase the diastatic action of saliva, it was of especial interest now to ascertain definitely whether free acid when present in small percentages does invariably retard diastatic action. Langley and Eves state that " although saliva neutralized to litmus sometimes shows an increase of action on the addition of 0.0005 to 0.001 per cent. HCl ; yet if the proteids of the saliva be saturated with acid, there is a diminution of its amylolytic action, althongh no free acid is present in the saliva." This we cannot regard as correct without qualification, since our experiments appear to show that saliva with its proteid matter saturated with acid has a greater diastatic action in a given time than saliva simply nentralized, provided the percentage of acid-saturated proteids is not too large. The same investigators further state "that 0.0015 per cent. HCl distinctly diminishes the amylolytic action of pytalin," and "since 0.0015 per cent. HCl increases amylolytic action it seems very umlikely that $0 \cdot 005$ per cent. should increase it ;" but as Langley and Eves, in studying the influence of free acid, apparently used diluted, neutralized saliva, in which the proteids present were not combined with acid, depending simply upon dilution to aroid the influence of these bodies, it seems to us a little uncertain whether their results are strictly accurate on this point, since saliva even very much diluted does contain some proteid matter. They, however, state in this connection that "we have often found that solutions which we have thought carefully neutralized have been increased in action by the presence of still smaller percentages of acid, viz: 0.0005 to 0.0010 per cent." Here, however, so far as their results show, the observed increase of activity may have been due

[^28]to the small amount of acid-proteid matter present, certainly conld not have been due wholly to free acid.

We have tried a large number of experiments on this point in a variety of ways, all of which tend to show that a very small trace of free acid, when the amomnt of acid-proteids is not large, does, seemingly, slightly increase the diastatic action of the ferment. It is, perhaps, questionable, however, whether in the use of such small percentages of acid, the results are to be strictly depended upon. The presence of a small amount of phosphate in the starch or a trace of alkali, not to be detected by litmus, might easily neutralize the small amount of acid added. Again, non-saturation of the proteids to only a very slight extent might effect the result. We subjoin two or three of our experiments.

Series XX.

20 c.c. filtered saliva were neutralized and then sufficient acid added to combine with the proteids present; the mixture then diluted to 100 c.c. The solution contained 0.0114 gram combined HCl , but no free acid. A.

20 c.c. of the same filtered saliva nentralized, and the proteids just saturated with acid. $3 \cdot 1$ c.c. $0 \cdot 1$ per cent. HCl were then added and the mixture diluted to 100 c.c. The solution contained 0.0114 gram combined HCl , and in addition 0.0031 gram free HCl . The solution gave a distinct yiolet with tropaeolin $00 . B$.

Digestions were made, using 1 gram starch in a volume of 100 c.c. Time, 30 minutes. Following are the results.

Amount diluted saliva	A.		B.	
	Wt. Cu In one-eighth.	Total amt. sugar.	Wt. Cu in one-eighth,	Total amt. sugar.
20 c.c.	0.0988 gram.	0.4024 grain.	$0 \cdot 0972$ gram.	. $0 \cdot 3960$ gram.
10	$0 \cdot 0917$	$0 \cdot 3736$	0.0921	$0 \cdot 3752$
5	$0 \cdot 0826$	$0 \cdot 3368$	0.0861	$0 \cdot 3512$
Amount starch converted.				
Amount diluted saliva.	A.			Free $\mathbf{H C l}$ in B.
20 c.c.	36.23 per cent.	$35 \cdot 65$	cent.	0.00062 per cent.
10	$33 \cdot 53$	$33 \cdot 78$		0.00031
5	$30 \cdot 32$	$31 \cdot 62$		0.00015

Here there can be no question but that there was free acid in B. The saliva gave a distinct reacion with tropaeolin 00 and the starch used was apparently neutral. In this instance 0.0006 per cent. free acid slightly diminished the diastatic action, while 0.0003 per cent. slightly increased it.

A second experiment of like nature gave the following results:

Series XXI.

20 c.c. filtered saliva were neutralized and the proteids exactly saturated with HCl , then diluted to 100 c.c. The eolution contained 0.0073 per cent. combined HCl , but no free acid. A.

20 c.c. of the same saliva neutralized and the proteids saturated by the addition of the same amount of acid as in $A ; 1.2$ c.c. $0 \cdot 1$ per cent. HCl were then added, so that a distinct tropaeolin reaction could be obtained in the 41 c.c. of fluid. The fluid was diluted to 100 c.c. and then contained 0.0012 per cent. free $\mathrm{HCl} . B$.

20 c.c. of the same saliva, neutralized and the proteids exactly saturated with acid; then enongh more acid added to give a distinct tropaeolin reaction, after which the solution was diluted to 100 c.c. The 100 c.c. of fluid contained exactly 0.003 gram HCl. C .

A drop of the latter fluid on being tested gave a distinct violet with tropaeolin 00.

Following are the results of digestions made with the foregoing solutions of saliva.

Amount of diluted saliva.	A.	h converte	c.
20 c.c.	35.65 per cent.	35.58 per cent.	35.36 per cent.
10	$33 \cdot 71$	$33 \cdot 27$	34•14
5	28.81	$29 \cdot 53$	$30 \cdot 32$

Here it is seen, as before, that the smaller percentages of free acid arising from the use of 5 and 10 c.c. of saliva, show a distinctly increased diastatic activity, while with 20 c.c. the results are very nearly identical; too large an amount of free acid to increase the action and yet not enough to materially diminish it.

We next tried the influence of increased percentages of free acid on the action of ptyalin.

Series XXII.
30 c.c. filtered saliva were neutralized and the proteids just saturated with acid, then diluted to 150 c.c.; 10 c.c. of this diluted saliva equal to 2 c.c. of the original saliva were used in each digestion. Following are the results, after warming with starch at 40° C. for 30 minutes in the presence of the percentages of free acid specified. The acid solutions were mixed with the starch previous to the addition of the saliva.

Per cent. free acid.	Wht. Cu in one-eighth.	Total amt. sugar.	Starch converted.
0	0.0919 gram.	0.3744 gram.	33.71 per cent.
0.0006	0.0924	0.3768	33.92
0.0010	0.0773	0.3152	28.37
0.0020	0.0166	0.0744	6.69
0.0030	trace		

Here a slight increase is noticed with 0.0006 per cent. followed at 0.002 per cent. by a rapid fall in diastatic action.

With stronger solutions of ptyalin, like results were obtained as follows:

Series XXIII.

Filtered saliva wats neutralized and the proteids just saturated with HCl. An amount of this fluid equivalent to 5 c.e. of the original saliva was used in each digestion. In this amount there was present 0.00266 gram combined HCl , but no free acid whatever.

Following are the results of digestions with this saliva in the presence of the percentages of free acid specified.

Per cent. free acld.	Wt. Cn in one.elghth.	Total ant. sugar.	Starch converted.
0	0.0956 gram.	0.3896 gram.	35.07 per cent.
0.0005	0.0966	0.3936	35.43
0.0010	0.0867	0.3536	31.80
0.0020	0.0162	0.0728	6.55
0.0030	trace		

Increasing now the amount of saliva still further, so that the percentage of combined acid reaches a point where its retarding influence begins to be felt, the presence of the smallest amount of free acid then causes at once a decided decrease in diastatic action. Thus, using the same saliva as was employed in the preceding series, only in such quantity that 20 c.c. of original saliva were present in each digestive mixture, it was found that the free acid produced a much greater retarding effect than before. The percentage of combined hydrochloric acid, in the form of acid-proteids, contained in each digestive mixture was 0.01064 per cent. Following are the results of the diastatic action.

Per cent. free acid.	Wt. Cu in one eighth.	Total amt. sugar.	Starch converted.
0	0.0972 gram.	0.3960 gram.	35.65 per cent.
0.0005	0.0830	0.3384	30.46
0.0010	0.0410	0.1712	15.41
0.0020	0.0061	0.0328	2.95
0.0030	trace		

This result accords with the statement made by Langley and Eves, "that if the proteids of saliva be saturated with acid there is a diminution of its amylolytic action, although no free acid is present in the saliva. 'This diminntion is made more marked by the atdition of the smallest quantity of hydrochloric acid." 'The above quantitative results plainly testify to the accuracy of the latter part of their statement. As to the action of the acid-saturated proteids that is wholly dependent upon the percentage present.

c. Destructive action of fiee acid.

It has been clearly shown* that acid approximating to the strength of the acid of the gastric juice has a destructive action on the salivary ferment. smaller percentages of acid have a like destructive action. It has at the same time been shown that the presence of very much smaller percentages of free acid stops the amylolytic action of the ferment. Is this stopping of the amylolytic action in every case due to destruction of the ferment, or simply to the retarding action of its presence? Langley, by using an aqueous extract of the parotid of rabbits, with but little proteid matter, conchded that the presence of 0.014 per cent. hydrochloric acid is sufficient to destroy all but the merest trace of ferment in five minutes at $39^{\circ} \mathrm{C}$. This before the action of acid-proteids was known. Chittenden and Ely by experimenting with human saliva came to the conchusion "that there may be in the presence of a very clitute acid, a simple stopping of the diastatic action, without destruction of the ferment;" in other words, the retarding influence of very small percentages of free acid is not necessarily due to destruction of the ferment. Langley and Eves criticising this conclusion state "that since Chittenden and Ely apparently used unneutralized saliva and took no account of the proteids present, it scems to us probable that not only was there no free hydrochloric acid in their experiments, but that even the proteids were not saturated with acid." In the article to which they refer it is, however, explicitly stated in a foot note that the saliva was nentralized and then an amonnt of acid added to equal 0.025 per cent. Unfortmately, we did not then know of the action of acid on the proteids of the saliva; consequently, the above percentage must have been mainly in the form of combined acid. Still, the smaller percentages of free acid do not show great destructive action; their power of retarding the action of the ferment is out of all proportion to their power of destruction. Amylolytic action is almost entirely stopped by the presence of 0.002 per cent. free hydrochloric acid, but warming saliva at $40^{\circ} \mathrm{C}$. with 0.002 or even 0.005 per cent. hydrochloric acid for 30 minutes causes little if any destruction of the ferment. On neutralization, diastatic action goes on as vigoronsly as ever.

This is well illustrated by the following experiments:

[^29]Series XXIV.
20 e.e. of filtered saliva were nentralized, the proteids just saturated with acid and the mixture diluted to 100 c.c. The solntion contained 0.007 per cent. combined HCl .

10 c.c. of this diluted saliva were warmed with the specified percentages of acid for a defuite time, then nentralizing and equalizing mixtures were added and the diastatic action determined.

Following are the results.

Length of time at $40^{\circ} \mathbf{C}$	Per cent. of free $\mathbf{H C l}$.	Starch converted.
30 minutes,	0	32.63 per cent.
30	0.001	34.08
30	0.002	31.38
60	0.002	32.48
30	0.005	31.27
30	0.010	4.60
30	0.030	Complete destruction.

Althongh the results are for some reason a little irregular it is sery evident that $u p$ to 0.005 per cent. of free acid there is, under these conditions, no particular destruction of the ferment. With 0.010 per cent. on the other hand the destruction is very great.

As to the bearing which these results have on the possible amylolytic action of saliva in the stomach, it is plain that when the fluids of the stomach aequire an acid reaction due to the presence of free hydrochloric acid ptyalin will soon be destroyed. In the first stage of digestion, however, when there is no free acid, the conversion of starch into sugar can undoubtedly go on, and at this stage of the process the proteid matter present may act as a shield to protect the ptyalin and at the same time to stimulate it in its action, but as the acid-proteids increase in amount and come nearer and nearer to their saturation point it is possible that diastatic action may entirely stop even before free acid makes its appearance. Certainly all salivary ptyalin must ultimately be destroyed in the stomach.

General conclusions.

1. The diastatic action of saliva can be taken as a definite measure of the amount of ferment present only when the dilution of the saliva in the digestive mixture is as $1: 50$ or 100 . The limit of dilution at which decisive diastatic action will manifest itself with formation of reducing bodies is 1:2000-3000, under the conditions previously given.
2. 'The diastatic action of neutralized saliva is greater than that of normally alkaline saliva. The difference is particnlarly noticeable
where the dilution is as $1: 50$ or 100 , and is apparently ont of all proportion to the amount of alkalinity.
3. Sodium carbouate retards the diastatic action of ptyalin in proportion to the amount of alkaline carbonate present. The percentage of alkaline carbonate, however, which hinders diastatic action can be designated only for definite mixtures and not in a general sense, being dependent upon the dilution of the saliva and the consequent change in percentage of proteid matter.
4. The destrnctive action of sodinm carbonate is modified materially by the dilution of the saliva; becoming greater the more the fluid is diluted. This result is due not to simple dilation but doubtless to the diminished amount of proteids.
5. Neutral peptone has a direct stimulating effect on the diastatic action of neutral saliva.
6. The presence of small percentages of neutral peptone tends to raise the diastatic action of normally alkaline saliva, to a point even beyond the action of the nentralized fluid; due in part doubtless to a loose combination of the alkali with the proteid matter, and also to a direct stimnlation of the ferment. Likewise peptone tends to diminish in a similar manner the retarding action of the various percentages of sodium carbonate. To accomplish this, however, the amount of peptone must be proportionate to the percentage of alkaline carbonate.
7. Peptone tends to prevent the destructive action of dilute sodium carbonate on salivary ptyalin, thus giving proof of the probable formation of an alkaline-proteid body.
8. Saliva with its proteid matter saturated with acid appears to have a greater diastatic action than when simply neutralized ; except when the acid-proteids thus formed are above a certain percentage. Small percentages of peptone saturated with acid, similarly increase the diastatic action of neutralized saliva up to a certain point. Increasing the percentage of acid-proteids finally causes a diminution of diastatic activity.
9. The retarding influence of acid-proteids is out of all proportion to their power of destruction. Large percentages however of acidproteids may cause almost complete destruction of the ferment.
10. The most favorable condition for the diastatic action of ptyalin, under most circumstances, appears to be a neutral condition of the fluid together with the presence of more or less proteid matter. The addition of very small amomnts of hydrochloric acid, however, to dilute solutions of saliva, giving thereby a small percentage of acid-

Trans. Conn. Acad.; Vol. VI.
proteids, appears to still further increase diastatic action. Under such conditions a minute trace of free acid appears to still further increase the action.
11. $0 \cdot 003$ per cent. free liydrochloric acid almost completely stops the amylolytic action of ptyalin. The larger the amount of saturated proteids the more pronounced becomes the retarding action of free acids.
12. The retarding effects of the smaller percentages of free acid are not due wholly to destruction of the ferment. Pronounced destruction takes place with $0 \cdot(105-0.010$ per cent. free hydrochloric acid.
13. Proted matter, in influencing the diastatic activity of salivary ptyalin, acts not only by combining with acids and alkalies, but apparently also by direct stimulation of the ferment.

Sheffield Laboratory of Yale College, Jan., 1885.

IX.-North American Conopide: Conclusion.* By Dr.

 S. W. Williston.The present paper completes a monographic review of this small family of parasitic diptera, with a synopsis of the family, generie, and specific characters. Forty-three species, six of which are more or less doubtful, comprise the entire number now known from North America-more than half as many as are known to oceur in Europe, and about a fifth of the entire number known throughont the world. Nine genera only are recognized in this family, two of which have not, so far, been detected in North America, viz: Sicus and Glossigona. Only one genus does not appear in Europe, Stylogaster, which is here considered the type of a distinct sub-family. None of our species are known with certainty to occur elsewhere. The species are probably all parasitic, living within the bodies of other insects till ready to escape as imagos. In some cases they show a remarkable mimicry of certain hymenoptera.

CONOPS.

Conops gracilis, n. sp.
t. Length, 12 mm . Face and checks yellow; facial grooves wholly yellow. Proboscis reddish, black at the end, base moderately swollen, scarcely once and a half the length of the head. Antenne black, the first joint and the base of the third red, the second joint reddish brown; first joint more than half as long as the second, the second and third of nearly equal length; process of second joint of style small, third joint moderately long, the attennated portion about as long as the thickened part. Front yellow, brownish immediately above the base of the antemne and near the middle. Oceiput and vertex reddish, the under part of the former like the face; posterior orbits with a narrow border of light yellow dust. Thorax ret, the dorsum with three broad coaleseent black stripes, the middle one abbreviated behind, the onter ones both in front and behind ; disk of metanotum blackish; a small spot on the imer side of each humerus yellow pollinose; the moderately

[^30]broad plemral stripe, distinctly limited and not narrowed above, upper border of disk of metanotum, extending broadly on the sides, whitish pollinose. Abdomen red, the first, fourth, and fifth segments blackish above; the forr anterior segments rather broadly bordered posteriorly with golden or grayish yellow pollen, and nearly the whole upper surface of the fifth and sixth segments thickly dusted with the same. Legs red; basal half of the tibiæ yellow, coxæ and outer distal part of the four front tibie with silvery luster; tarsi black, the metatarsi somewhat reddish. Wings brown in front, hyaline behind; costal cell, sub-hyaline; first basal cell, and the discal cell, except a brown streak in front of the fifth vein, hyaline.

Hab. Arizona!
One specimen, from Professor Comstock.

Conops fronto, n. sp.

o 9 . Length, $11 \frac{1}{2}-13^{\text {nnn }}$. Fice, cheeks, and front uniformly light yellow, a minute spot, immediately above the base of the antenne, black; face with a silvery luster, extending narrowly along the orbits of the front. Antennæ blackish, with a reddish cast, the first joint yellowish red; first joint about two-fifths the length of the second, the third very distinctly shorter than the second; attenuated portion of the style short, the second joint considerably projecting. Eyes with a noticeable triangular smooth space behind, above the middle. Occiput reddish yellow, the upper part and the vertex more obviously reddish; pollen light yellow, varying in different reflections. Prohoscis about once and a half the length of the head, black, with a deep reddish cast, base swollen. Thorax light red; dorsum with a white reflection in certain lights, with three broad, more or less coalescent, black stripes, the middle one abbreviated posteriorly, the lateral ones both in liont and behind; disk of the metanotum and the metasterna, black, dust of the hmmeri and the vertical stripe of the plenre indistinct; dust of the metathorax behind light grayish yellowish. Abdomen slender in hoth sexes; red, the disks of the third and fourth segments more or less black; posterior margin of the second segment and the anterior part of the third yellow; third segment with a narrow posterior band, fourth witls a broad one, evanescent anteriorly, and the remainder of the dorsum, thickly golden yellow pollinose; process of the fifth segment helow in the female of moderate size. Legs red; base of all the tibiae yellow, tip of the hind tibiae and all the tarsi black, pulvilli and the claws, except their lip, light yedow ; coxal and onter
side of the four front tibiae with light golden luster. Wings with a brown cloud, reaching to the extremity of the submarginal cell; costal cell and a streak running over the fourth longitudinal vein light yellow; the brown does not encroach upon the first basal cell, except at the base.

Hab. Western Kansas!
Three specimens, August.

ZODION.

Small to rather large species, nearly bare, black or redतish yellow. Face bare, somewhat receding in profile; cheeks narrower than the vertical diameter of the eyes. First joint of antenne short, the second and third of nearly equal length. Proboscis slender, elongate, directed forward, not bent near its middle. Abdomen moderately long, arched above, curved downward at its tip, moderately narrowed at the base. Femora thickened, the hind pair but little longer than the others. Wings without distinct picture.

Zodion pictulum, n. sp.
f ㅇ. Leugth, $7 \frac{1}{3}-8 \frac{1}{2} \mathrm{~mm}$. Head yellow, cheeks with obscure, indefinite, brownish spots; proboscis black, about as long as the hind femora. Antenne yellow, the third joint reddish or somewhat brownish, second and third joints of equal length. Face with a silvery white reflection. Front opaque yellow, blackish at the vertex, with a triangular expansion in the middle in front; below the middle, on each side near the orbit, with a small blackish or brownish spot. Occiput black, with black pile; and with silvery pollen, changeable in different reflections. Thorax and abdomen black, thickly light gray pollinose, leaving deep black opaque spots as follows: On the dorsum of the thorax with two slender stripes, broadly separated and interrupted or abbreviated on the posterior part; on the inner side of each with an elongate spot, sometimes obsolete, situated near the posterior part of a dark, not opaque, stripe; on each side with two large spots, one before, the other behind the suture; a spot on the humeri, the outer end of the suture, the post-alar callosity, the tip of scutellum, and an additional smaller one on each side; the pleuræ with several less definite ones; the dorsum of the abdomen with irregular, rather large spots on the anterior corners of the second segment and on the posterior part of the second and following segments. Scutellum projecting, nearly triangular in shape. Ovipositor shining black. Legs yellow,

Whitish pollinose; the upper side of all the femora more or less broadly black, a spot on the under side of each femur, near the outer part, and two narrow rings on each tibia, black, the basal one of the hind tibiæ more brownish; tip of claws black. Wings distinctly tinged with brownish in front, sub-hyaline behind, yellow at the immediate base, the anterior cross-vein lightly clouded.

Hab. New Mexico!
Two specimens (G. F. Gaumer).

Zodion leucostoma, n. sp.

\hat{o} ㅇ. Length, $9-11^{\mathrm{mm}}$. Face yellowish white, silvery; front light yellow below, reddish above; antenme light red; occiput, except the vertex and the sides below, blackish, with light colored pollen. Thorax red, the pleure more or less, and the metanotum, black or blackish; dorsum, except the sides and behind, black or brown, visible as a more or less distinct narrow median stripe, and a lateral stripe or large elongated spot: in the middle there is a pair of gray pollinose stripes, confluent in front and reaching to beyond the middle; on the sides of the dorsum the same pollen is to be seen, encroaching more or less upon the black or brown; margin of the seutelhm broadly pollinose. Abdomen yellow or red, or more or less blackish, but characteristically marked with light gray pollen as follows: On the second segment, forming a broad band, leaving the anterior corners and two more or less confluent oval spots behind; third segment with an oblique spot on each side, and the barrow hind margin; the fourth segment, except an oval spot on each side and the anterior cormers; fifth and sixth segment wholly. Legs yellowish red, the tip of hind tibise behind and the tip of the tarsi blackish. Wings with a brownish tinge.

Hab. Western Kansas, Montana, Arizona!
Three specimens, Montana, Arizona (Professor Comstock), and Western Kansas, August. In the specimen from Montana the second abdominal segment is marked like the third.

Zodion fulviffons Say.
t $\%$. Length, 6-9 $9^{\text {min. }}$. Faee yellowish white, silvery dusted; front reddish yellow, often brownish above; antenne red, the second joint, and the third joint at the base, often blackish. Occipat black, whitish pollinose. Thorax black, thickly graly pollinose, the dorsum with two abbreviated, rather distant, slemer hackish stripes; in addition there is often the begimning of two median ones in front
and two abbreviated and interrupted ones exteriorly ; pile black, rather long, on the border of the scutellum with a row of hairs. Abrlomen of ten black, gray pollinose, leaving a pair of median, interrupted, indistinet blackish stripes and minnte blackish dots; frequently the sides and tip of the abdomen are reddish or yellowish, and not infrequently the entire abomen is reddish or even yellow. Legs yellow or reddish yellow, the femora often on the upper side blackish or black. Wings with a brownish tinge, at the immediate base yellow.

Hab. New England, New Mexico, California, Washington Territory!

Numerous specimens. This species is very variable. In the vicinty of New Haven, and at the same time, I have captured specimens with a yellow abdomen, much smaller than others with the abdomen entirely black. The different forms insensibly merge into one another. From this fact, and because I have seen specimens from the Pacific coast showing all these variations, I must consider Say's Z. ubdominule as nothing more than a variety.

Zodion pygmæum, n. sp.
\& 오. Length, $3 \frac{1}{2}-4^{\mathrm{mm}}$. Face light yellow; cheeks narrow, not a third of the vertical diameter of the eyes. Antennæ blackish, the third joint at the base broadly red; third joint longer than the second. Front blackish above, yellow below. Occiput black, grayish pollinose. Thorax black, thickly gray pollinose, in the middle with two slender stripes, and on each side with two small spots, opaque black. Abdomen black, on the sides and the venter yellow, thickly covered above with gray pollen, leaving opaque black spots as foliows: Two small, triangular spots (sometimes obsolete) on the posterior part of the second segment, two similar but very large ones on the thitd segment, usnally nearly completely coalescent; two pairs, successively smaller, on the fourth and fifth segments; posterior margins of all the segments narrowly gray pollinose; hypopygium black; in the female the spots on the second, third, and fourth segments larger, the fifth segment very short and the spots wanting, the oripositor shining reddish yellow. Legs brownish, whitish pollinose; the under side and tip of femora, the base of tibix, and the base of all the tarsi, yellowish. Wings hyaline.

Hab. California and Colorado!
Ten specimens from California (O. T. Baron) and one from North Park, Colorado (G. B. Grinnell). All males but one from California.

Zodion nanellum, Loew.
Translation. "q. Length, $2_{6}^{6 \mathrm{~mm}}$. Very stnall, black-cinereons. Occipnt blackish; front orange colored, near the vertex fuscons; antemar fuscons, on the sides, except the tip, rufous; face and cheeks dilutely yellowish, the latter narrower, the eyes proportionally larger than in other species; thorax black-cinercous, plemre a little lighter; dorsal stripes black, narrowly interrupted, abbreviated at both ends. First four abdominal segments above black, opaque, the posterior margins very narrowly, the siles broadly, cinereons pollinose; fifth segment very short, fusco-testaceous; sixth segment testaceous, lightly pollinose, sub-shining; seventh segment wholly destitute of pollen, shining, testaceons, the tip, however, black; ventral valve rather large. Legs sub-fuseons; coxæ, tip of the femora and base of tibia pallid reddish. Halteres white. Wings cinereons-hyaline, veins black."

Hab. District of Columbia (Lw.).
This species must resemble Z. pygmoxum, but differs in the greater extent of the opaque black on the dorsuma of the abdomen.

MYOPA.

Rather large to rather small species. Head large, swollen. Antennæ of moderate length, the second and third joints of nearly equal length, the third joint oval. Face very large, cheeks very broad, at least as broad as the vertical diameter of the eyes. Proboscis always with a hinge near its middle, the terminal portion folding backward. Front broal, produced somewhat conically for the antenne. Thorax short; scutellum semioval. Abdomen short, depressed, oval, the terminal part always curved downward and inward, the ovipositor not elongated. Legs rather stont, the hind femora searcely elongated. First posterior cell of wings sometimes closed, the anal cell acute, extending towarl the border of the wing.

Myopa pictipennis, n. sp.
ㅇ. Length, $8^{\text {rum }}$. Face ant eheeks yellowish white, on each side of the face in frout with some small, black spots (probably somewhat variable) ; above them, in front of the lower part of the eye, another blackish spot, separated from the blackish eolor above the base of the antenna, which extends ontward to the orbit; lower part of the occiput on the sides much inflated; choeks with a fringe
of white pile below; proboscis black, the basal joint rather longer than the femora; front brownish yellowish. Eyes small, their rertical diameter less than the width of the checks. Antenne reddish brownish. Pile of the front short, sparse, black. Thorax black, the sides and hind part of the dorsum, the scutellum, and the larger part of the plenre reddish; dorsum with two slender, indistinct stripes in front, and two spots in front of the scutellum, brownish yellowish pollinose; pile black, ratleer abundant and long, especially on the post-alar callosities and border of the scutellum. Abdomen not very broad, shining black, the terminal segments above, in part red; second and following segments white pollinose, in the form of a large triangle, which in front may be truncate or emarginate; pile black, rather conspicuons on the sides in front. Legs stout, black, with black pile; the tip of all the femora, the base and tip and a median ring of all the tibiæ, and the first four joints of all the tarsi yellow, last joint of the tarsi brown. Wings in front rather strongly and broadly clouded with brown, the immediate base and a transverse spot at the origin of the third vein yellow, a blackish clond on the anterior cross-vein and brownish spots in the first and second posterior cells.

Hab. Arizona and California!
One specimen from Professor Comstock, and four specimens from Mr. D. W. Coquillet.

Myopa pilosa, n. sp.
§. Length, 6^{mm}. Face yellowish white, reddish on the sides above; cheeks rather thickly white pilose below, in width rather greater than the vertical diameter of the eyes; proboscis black, the basal joint very distinctly shorter than the femora; antenne red, the seconl joint brownish above. Front reddish yellow, the upper part of the occiput similarly colorer, with more or less brownish; pile of the front long and abundant, black. Thorax black, the humeri, lateral margins of the dorsum, the posterior part in front of the scotelnm, and the scutellum wholly, red ; pleure reddish, but with ill-defined blackish spots; dorsum with two faintly perceptible whitish stripes in front, pile long and black. Abdomen rather narrow, black toward the front, the hind segments becoming wholly red; the anterior segments behind on each side, the posterior ones wholly lightly yellowish white pollinose ; pile of the whole abdomen long, erect, abundant, and black. Legs yellowish red; rather thickly black pilose; the femora with an incomplete ring near tip and the

Trans. Conn. Acad., Vol. VI.
tibie with two narrow rings, black. Wings brownish in front, subhyaline behind, the anterior cross-vein with a blackish, the posterior cross-vein with a brown cloud; first posterior cell open.

Hab. California!
One specimen (H. K. Morrison). This species is related to pictipennis, but may be distinguished by its shorter proboscis, and the greater pilosity of the front and abdomen; it is also smaller.

Myopa vesiculosa Say.
o ㅇ. Length, 6^{mm}. Face and cheeks yellowish white. Antenne red, the second joint brownish. Front blackish, lighter on the sides below. First joint of proboscis not as long as front femora, and scarcely twice as long as the palpi. Thorax black, the humeri, the sides of the dorsum, the scutellum, and pleure, deep red; pile of dorsum short, inconspicuous, chiefly black. Abdomen rather broadly oval, black, shining, the lateral margins and posterior segments red; pile short, recumbent, white; the posterior angles of the second and third segments, the sides of the fourth segment, and all the remaining segments yellowish gray pollinose. Base and tip of femora, base of tibix, and the tarsi yellow, elsewhere brownish red, the femora more or less blackish. Wings strongly infuscated, except at the base, where they are light yellow; first posterior cell closed.

Hab. Atlantic States!
Two specimens, White Mountains (Dr. Dimmock) and Gcorgia (Morrison). A specimen from Virginia agrees, except that the short pile of the abrlomen is black. It is possible that the next species may not be distinct.

Myopa plebeia, n. sp.

of ㅇ. Length, 8-9 $9^{\text {min }}$. Head light yellow; front and upper part of occiput ferruginous red ; antenme red ; proboscis black, the basal joint shorter than the front femora, searcely twice the length of the palpi; the short sparse pile of the vertex black. Thorax dark red, dorsum with three obscure black stripes, the lateral ones abbreviated and intermpted, the middle one abhreviated behind; piles ort, black. Abdomen oval, hack, with short black pile; lateral margins and posterior segments red ; posterior angles of the seennd and third segments, the fonrth segment on the sides, extending across narrowly on the hind margin, and all of the sucereding segments
covered with rather dense yellowish gray pollen. Legs red, the knees and the tarsi more yellowish. Wings lightly infuscated with brown, the base yellow.

Hab. Arizona!
Three speeimens, male and female, from Professor Comstock.

Myopa clausa Loew.
of ㅇ․ Length, $6-7^{\mathrm{mm}}$. Face and cheeks light yellow. Antennæ red, the second joint distinctly longer than the third. Front darker yellow, with a large Y-shaped brown marking, expanding transversely above the base of the antemme. Upper part of the oceiput red, below yellow like the antennæ. Dorsum of thorax darker red, usually in the middle in front (extending more or less back) with a broad black stripe, often also on either side, near the middle, with a black spot; pile short, sparse, black. Abdomen lighter red; on each side of the posterior margin of the second, third, and fourth segments with an oval white pollinose spot; fifth and sixth segments with the same pollen, except a semioval space in front. Legs red; hind trochanters, base of hind femora, and base of all the tibir, and the tarsi wholly, yellow. Wings moderately infuscated, base yellow ; first posterior cell usually closed.

Hab. New England!
Eight specimens, Massachusetts and Connecticut. In one the third joint of the antemme is as long as the second. The third joint is often yellowish. In a specimen from Montana the antenne are very distinctly longer, the second joint being elongate; in another from California the antemme are short, the second and third joints being of nearly equal length; otherwise these specimens seem to show no differences from the eastern ones. Other specimens from Arizona, Montana, Wyoming, California, Washington Territory, etc., show great variations in size (up to nine or ten mm.) in depth of color, and even in the more oval abdomen, but I am utterly at a loss to find distinctive characters.

Myopa obliquofasciata Macquart.
"Testucea. Thorace dorso nigro vittis duabus albis. Abdomine oblique albo-fasciata.

Long. 4 l. đ̂. Face et front jaunes ; la première ì duvet blanc ; vertex fauve. Antemnes: less deux premiers articles fauves; le troisième manque. Thorax à dos noir, avec denx bandes longitudi-
nales de duvet blanc; épaules, côtés, bord postérieur et écusson testacés, à líger duret blanc. Abdomen testacé deuxième, troisième et quartieme segments à band oblique de duvet blanc de chaque côté; les suivants couverts de duret blanc. Pieds testacés; jambes à duvet blanc ell avant. Ailes à base fauve et extrémite brumâtre.

Du Texas, Galveston."
Myopa longicornis Say.
"Body black, hairy; wings dusky, pale at loase: antemie as long as the head."
"Antemm pale on the imer side and beneath; hypostoma [face] pale with a silvery reflection; front and vertex dusky; proboscis black; thorax with two obsolete pale lines; wings blackish, pate towards the hase; poisers whitish; anterior pairs of feet with the thigh beneath, at base and leg [tip], pale; anterior pairs of trochanters pale, with a silvery reflection; posterior feet, thighs pale on the basal moicty; abdomen clavate and hamate at tip."
"Inhabits Missouri!"
"Length about three-tenths of an inch." say.
Translation: "Blackish, abdomen on each side transversely spotted with white, legs leather-yellow, the femora black above. Length, $2 \frac{3}{4}$ lines.-From Pennsylvania."
"Antenne black, on the lower border luteous. Face yellowish, with silvery luster. Front yellowish brownish; occiput nearly hair-gray, on the mper borter blackish. The thorax shows in certain reflections a broad hair-gray stripe, divided in its middle by a linear black stripe; also the humeri and spots on the pleure have a hair-gray lnster. Abdomen blackish, with hair-gray glistening posterior borders ; second and third segments on each side behind with a hair-gray spot, broader ontwardly. Wings a little infuseated; halteres yellowish. Himd femora on the basal half wholly leatheryellow ; tibia in the middle brown-blackish." Wiedemann.

This species is mknown to me, lut I believe it will be recognized by the above leseriptions. Wiedemann's geographical knowledge of America was not afways accurate; the species probably oceurs in the region east of the Rocky Monntains.

Myopa vicaria Walk.

"Ferrugiuen, cupite fulvo, thorweis disco piceo, abdomine muculis camo-pubescentibus ormuto, antemmis pectibusque fermubneis, tursis fulvis, wlis fiulvo dinereoque rariis, renis trambersis fusco webulosis."
"Body ferruginons, clothed with black hairs: head tawny, clothed with black hairs, very large, pale yellow, and covered with whitish hairs about the mouth: eyes pitchy: mouth black: feelers ferruginous; first and second joints clothed with short black hairs; bristle pitehy towards the tip: disk of the ehest pitchy: abdomen longer than the chest, adorued with patches of hoary down: legs ferruginous, slightly covered with white bloom, clothed with black hairs; feet tawny; claws black, tawny at the base; foot-cushions yellow: wings tawny along the borders of the veins; disks of the areolets slightly gray; wing ribs and poisers pale tawny; veins tawny; cross-veins clonded with brown. Length of the borly 3 lines. Nova Scotia." Walker.

CONOPID』.

Churacters of the fomily.-Thinly pilose or nearly bare species. Face nearly vertical or gently retreating. Head broader than the thorax. Oral opening large; proboscis slender, more or less elongate, sometimes very much so, directed forwards, often with a joint in the middle, the distal portion folding back. Front broad in both sexes. Eyes bare. Antenne more or less elongated, usnally angulated at the base of the second joint, with a dorsal arista or terminal style. Thorax large, short ; stutellum small; tegula small. Abdomen of six or seven segments. Legs simple. Wings elongate; third longitudinal vein simple; three posterior cells, the first closed or much narrowed at the border ; anal cell ciosed.

Conopinæ.--Head large, swollen; face with median diraricate grooves, large ; cheeks moderately broad ; vertical callosity swollen; ocelli present; antenme elongate, the third joint not compressed; elongate, with a terminal, three-jointed style. Abdomen pedicillate or much constricted at the base, club-like at the end, the terminal segments bent downward, the fifth segment in the female with a more or less conspicuons process below. Legs moderately stont. Anxiliary vein of wings comected at its tip by a small cross-vein with the first longitudinal vein ; anal cell acute.

Small cross-vein of wings nearly opposite the tip of the anxiliary vein and near the middle of the discal cell;* femora and tibix not thickened or dilated, or if so, the thickening is regular ; third joint of antemme usually as long as the second (plate xli, fig. 1).

Conops.

* I am not aware that this character has hitherto been made use of. It is, I believe, of greater value than the structure of the legs, and will probably be found to apply equally well to exotic specios. The structure of the antennæ is of less value generically.

Small cross-vein of wings near the onter third of diseal cell; hind femora irregularly thickened toward the base, the tibie with irregular outlines, third joint of antenne shorter than the second (plate xli, fig. 2).

Physocephala.
Myopinæ.-Head large, inflated. Face with median grooves; cheeks broad or very broad; third joint of the antenne oval, with a short, thickened, two-jointed, median dorsal arista; vertical callosity not swollen. Abdomen somewhat narrowed at the base, the terminal part always eurved under; fifth segment of abdomen usually with a more or less conspicuons process below; the ovipositor rarely elongated and bent forward beneath the abdomen. Legs stout. Auxiliary vein of the wing sometimes connected at its tip by a small cross-vein with the first longitndinal vein.
1.-Proboscis directed forward, not bent near its middle (plate xli, figs. 3 and 4).

Zodion.
Proboscis bent near its middle, the terminal portion folding back.
2.
2.-Anal cell short, rectangular; ovipositor elongate (plate xli, fig. 5).

Dalmannia.
Anal cell elongate, acute.
3.
3.-Cheeks not as broad as the vertical diameter of the eye (plate, xli, fig. 6).

Oncomyia.
Cheeks as broad or broader than the vertical diameter of the eye (plate xli, fig. 7).

Myopa.
Stylogastrinæ.-Face narrow, carinate, without or with very indistinet grooves; proboscis elongate, the distal part folding back; cheeks narrow; antenne with a subterminal arista, the third joint more or less elongate; ocellar tubercle small, ocelli present. Abdomen slender, not narrowed at the base, the tip not curved forward; female ovipositor extrardinarily elongated, directed backward. Legs slender, tibix with spurs. Auxiliary vein of the wings not connected at its tip with the first longitudinal; anal cell small, obtuse (plate xh, fig. 8).

Stylogaster.
Larval choructers.-"Larvæ amphipnenstic (perhaps during parasitism metapneustic), the anterior stigmata very small, point-like, scareely perforate, rudimentary. Form of body variable, the anterior segments, however, thimer than the posterior ones, the larve hence oval or pear-shaped, with distinctly differentiated segments, which may be contracted and extended, as in mature Hypoderma larve. Antenne wart-shaped, with two ocelli-like chitinons rings at the end. Month hooklets strongly bent, with an obtuse clownwardly directed basal process and with thin slender points, thus, in fact, like Cephenomyia larva, two-armed (zwei-armig). (Esophagus
distinet, as in general all the organs are visible throngh the skin, which is roughened with small spines. On the under side, from the third segment, distinet lateral swellings are distinguishable. On the last segment are two large, round or kidney-shaped stigmatie surfaces, which are strongly convex, like a watch glass, and on those inner border the false stigma openings appear as a clear disk. Sometimes these surfaces are beset thiekly with small conical warts. The anns lies below. The larva lies with the posterior stigmata against the base of the abdomen of the insect in which it is parasitic. Between the mouth hooklets appear, sometimes, two additional ehitinous points. "The larva pupigera is oval, with button-like, slightly projeeting anterior stigmata and with the deseribed stigmatie plates at the posterior end. Segments not sharply distinguished, skin rough and with folds."*

The larve are parasitie upon other inseets, living within the abdomen and consuming the non-vital parts. The pupal transformation oceurs also here, in which stage they pass the winter, eseaping the following spring or summer throngh an opening made between the dorsal segments of the abdomen. From my own observations I had eome to the conclusion that the eggs of the parent were laid direetly mpon the body of the insect during flight, and I afterward learned that Rolineau-Desvoidy had long before observed, as I had done in Conops tibialis, a species of Conops following a Bombus, and repeatedly flying against it. They are usually parasitic upon Hymenoptera, and especially the genns Bombus. The following is a list of the genera upon which they have been observed. \dagger Conops upon Oediporla, Eucera, Halietus, Bombus, Osmia, Vespa, Odymerus, Pompilus, Sphex and Bembex; Myopa upon Andrena and Vespa; Zodion upon Hylaus; Stylogaster, it is thought, may be parasitic upon Termites.

CONOPS.

Conops Linné, Fanna Sueeiea, p. 1797, 1761.
Leopoldies Rondani, Nnov. Ann. Se. Nat. Bologna, x, 35, 1843.
Conopujus Rondani, Gen. Ital. Conop., 1845.
Plemrocince Maequart, Dipt. Exot., iv, Suppl., 164, 1850.
Conopilla Rondani, Dipt. Ital. Prod., i, 56, 1856.
Spyxosoma Rondani, Dipt. Ital. Prod., i, 56, 1856.
Brachyglossum Rondani, Dipt. Ital. Prod., i, 69, 1856.
Bombidia Lioy, Acta Venet., 3 Ser., ix, 1326, 1864.
Cylimelrogaster Lioy, (non Rond.), l. c.

[^31]1.-Third joint of the antenne distinctly shorter than the second. 2 . Third joint of antenne nearly or quite as long as the second; brown of anterior portion of the wings with distinet ontlines. 3 .
2.-Wings blackish in front, sub-hyaline behind, picture indistinct; black species.
brachyrhynchus.
Picture of wings distinct; front yellow; red species. fronto.
3.-Attenuated portion of antennal style short, proboscis short; a hyaline cross-band before the tip of the wing; shining blaek, dust grayish, front blackish or black. sylvosus.
Attennated portion of style long; proboscis considerably longer than the head; the brown not intermpted before the tip of the wing.
4.-Stripe of dinst on upper half of pleure indistinct or withont distinct borders. Front black, cheeks brown behind; proboscis about once and a half the length of the head. Dark colored species.
bulbirostris.
Stripe of dust on upper half of pleure as sharply defined as on the under half.
5.-Proboscis twice the length of head, stripe on upper half of pleure narrow. Reddish species. excisus.
Proboscis scarcely once and a half the length of the head; pleural stripe not narrowed above; face, cheeks and under part of front pale yellow.
6.-Facial grooves with a black spot on each side of the middle. Black species.
xanthopareus.
Facial grooves wholly yellow. Red species.
brachyrhynchus Macqualt, Dipt. Exot., ii, 3, 15, 13, tab. i, fig. 8; Williston, these Trans., iv, 341 (reproduction of the original).-Va., S. C., Ga., Mass., Kans.
Conops obscuripennis Williston, these Trans., iv, 328.
fronto Williston, these Trans., ante, p. 378.
sylvosus Williston, these Trans., ir, 329.-Mass., Comn., Kins.
excisus Wiedcmam, Anss. //w. Ins., ii, 234 ; Loew, Nene Beitr., etc., i, 28 ; Williston, these Trans., iv, 330.-Ga., Fla., N. C.
Conops sugens Wiedemann, Anss. Zw. Ins., ii, 236, 3.
bulbirostris Loew, Nene Beitr. etc., i, 30; Williston, these Trans., iv, 331.-Ga., N. C.
xanthopareus Williston, these Trans, iv, 332.-Comm.
gracilis Williston, these Trans., ante, p. 377.

Therecognized species of doubtfill position.

pictus Fiabricins, Ent. Nyst., iv, 391, 3; Syst. Antl., 176, a; Macquart, Dipt. Exot., ii, 3, 13, 9 (ex parte) ; Williston, these Trans., iv, 340 (reproduction of the original).
Conops Rumondi Bigot, in Ramon de la Sagra, etc., 808; tab. xx, fig. 6 ; Williston, these 'Trans, is, 340 (reprodnction of the original).
flaviceps Macquart, Dipt. Exot., ii, 3, 15, 14; Williston, these Trans. iv, $3+1$ (reproluction of the original).
fulvipennis Macpualt, Dipt. Exot., ii, 3, 13,10 ; tab. i, fig. 9 : Williston, these 'Trans., iv, 341 (reproduction of the original).

PHYSOCEPHALA.

Physocephala Schiner, Wien. Eutomol. Monatschrift, v Band, 1861; Fauna Anstr., i, 375.
1.-The brown of the wing fills ont the discal cell to beyond the great cross-vein.
Outer portion of diseal cell from near the small cross-vein distinctly lighter or hyaline.
3.
2.-Cheeks uniformly black; dust on the humeri indistiuct.
tibialis.
Cheeks with a yellow spot in the middle, brown in front and behind; humeri with distinct yellow dust.
sagittaria.
3.-Cheeks uniformly black or brown; basal joint of antenuse very short.
4.

Cheeks with a yellow spot in the middle; first joint of antepne about as long as the third.
5.
4.-Front with deep black transverse and median divaricate stripes; Dark colored species.
furcillata.
Front with narrow reddish stripes or wholly yellow; dorsum of thorax with a broad, median, posteriorly abbreviated black stripe. Reddish species.

Burgessi.
5.-Ultimate section of fourth vein but little or not at all longer than the penultimate.
Ultimate section nearly twice as long as the penultimate; dorsum of thorax with a narrow, median black stripe. Reddish species.

Texana.

6.-Facial grooves and frontal stripes black. Dark colored species.
marginata.
Facial grooves but little or not at all darkened; frontal stripes nearly or quite obsolete; dorsum of thorax with three black stripes, narrowly separated or confluent, the median one more abbreviated behind.
affinis.
tibialis Say, Jour. Acad. Phil., vi, 171; Comp. Wr., ii, 363 (Conops); Williston, these Trans., iv, 333 (id.).-Atlantic States.
Conops nigricornis Wiedemann, Anss. Zw. Ins., ii, 236, 4; Loew, Neue Beitr. etc., i, 31.
sagittaria Say, Jour. Acad. Pliil, iii, 83, 2; Comp. Wr., ii, 73 (Conops) ; Williston, these Trans., iv, 334 (id.).-Pemn., Mass., Comn., N. C.
Conops gemualis Loew, Nene Beitr. etc., i, p. 32; Williston, these Trans, iv, 335 (translation of the original).
furcillata Williston, these Trans., iv, 336 (Conops).-N. H., Can. ? Conops cethiops Walker, List, etc., iii, 671.
Burgessi Williston, these Trans., iv, 337 (Conops).-Col., Cal.
Texana Williston, these Trans., iv, 338 (Conops).-Tex.
marginata Say, Journ. Acad. Phil., iii, 82, 1 ; Compl. Wr., ii, 73
(Conops) ; Wiedemann, Auss. Zw. Ins., ii, 240, 9 (id.) ; Loew, Nene Beitr. etc., i, 34 (id.); Williston, these Trans., iv, 338 (id.) -Pem., N. H.
affinis Williston, these Trars., iv, 339 (Conops).--Kans., Cal., Wash. Terr.

Unrecognized species.

castanoptera Loew, Neue Beitr., etc., i, 33 (Conops); Williston, these Trans., iv, 336 (translation of the original).

ZODION.

Zodion Latreille, Précis des caract. géuer. d. ins., 1796.
1.-Scutellum triangular; thorax and abdomen with opaque black spots.
pictulum. Scutellum oval.
2.-Very small species, cheeks narrow; abdomen with opaque black triangular spots.
pygmæum.
Not very small species; abdomen without such spots.
3.
3.-Thorax with a pair of median pollinose stripes; abdomen with

- oblique pollinose spots on the third segment at least.
leucostoma.
Thorax pollinose, with at least two slender black stripes, abdomen more uniformly pollinose.
fulvifrons.
"q. Very small, black cinereous, abdomen opaque, the sides and a median longitudinal line of the sixth segment cinereous pollinose, sixth and seventh segments reddish. Length, $1 \frac{1}{3}$ lin." (about 3^{mm}).
nanellum.
nanellum Loew, Centur., viii, 75 ; Williston, these Trans., ante, p. 382. D. C. (Lw.).
? Zodion Occidensis Walker, List, etc., iii, 676.-Ohio.
pygmæum Williston, these Trans., ante, p. 381.-Cal., Col.
pictulum Williston, these Trans., ante, p. 379.-N. M.
fulvifrons Say, Jour. P’hil. Acad. N. Sc., iii, 83 ; Compl. Wr., ii, 74 ; Wiedemann, Auss. Zw. Ins., ii, 241, 1; Williston, these Trans., ante, p. $380 .--$ New Eng., Cal., Wash. Terr., Ariz.
Zodion abdominale Say, Jour. Acad. Phil, iii, 84, 2; Compl. Wr., ii, 74; Wiedemann, Auss. Zw. Ins., ii, 242, 2 (translation of the original).
? Myopa rubrifrons Robineau Desvoidy, Essai Myod., 247, 17.
leucostoma Williston, these Trans., ante, p. 380.-Mont., Kan., Ariz., Wash. Ty.

Unrecognized Species.

Americanum Wiedemann, Anss. Zw. Ins., 242, 3.-Montevideo. splendens Jæmmicke, Neue Exot. Dipt., 97.—Mexico.

ONCOMYIA.

Occomyia Robinean Desvoidy, Dipt. des environs de Paris, Myopaires, 50, 1853.
Thecophore Rondani, Dipt. Ital. Prod., i, 58, 1856.
Oncomyia Loew, Centur., vii, 73.
1.-Second joint of the antenne but little or not at all longer than the third.
Second joint of the antenna considerably longer than the third.
2.-Large species ($8-9^{\mathrm{mm}}$).
3.

Smaller species; femora, or at least tibie, in large part blackish.
3.-Femora and tibiæ wholly reddish yellow.
modesta.
Femora, at least on onter part, black; eastern.
Var. melanopoda.
4.-Species $5-7^{\mathrm{mm}}$ long. abbreviata.
Very small species $\left(4-5^{\mathrm{mm}}\right)$.
Baroni Williston, these Trans., vi, 97 (11).-Cal., Col.
abbreviata Loow, Centur., vii, 73 ; Willistou, these Trans., vi, 97 (11). -New Eng., ? Cal:
modesta Williston, these Trans., vi, 96 (10).-Cal.
Var. melanopoda Williston, supra et vi, 96.-- White Mountains.
loraria Loew, Centur., vii, 74 ; Williston, these Trans., vi, 98 (12) ; (translation of the original).-New Eng.

MYOPA.

Myope Fabricins, Syst. Entom., $798,1775$.
Phorosia Robinean-Desvoidy, Fam. d. Myopaires, 1853.
Myopella Rob.-Desvoidy, l. c.
Pupurelle Rob.-Desvoidy, I. с.
Mrustella Rob.-Desvoidy, l. c.
Myopina Rob.-Desvoidy, l. c.
Fuirmairia Rob.-Desvoidy, l. c.
Lonchopalpus Rob.-Desvoidy, l. c.
Pictinu Rob.-Desvoidy, l.c.
Gonirlymehus Rondani, Dipt. Ital. Prod., i, 58, 1856.
Arpagita Lioy, Acta. Venet., 3 Ser., ix, 1327, 1864.
Ischiodonta Lioy, l. c.
1.-Cheeks below very distinctly fringed with pile; wings with spots.
Cheeks not fringed with pile below.
2.
2.--Face with black spots.
3.

Face withont black spots, pile of abdomen long.
pictipennis.
3.-Abdomen chiefly black.

Abdomen red.
4.-Pile of abrlomen light yellow.
pilosa.
4. clausa.

Pile of abdomen black.
pictipennis Williston, these Trans., ante, p. 382.-Ariz.
pilosa Williston, these Trans., ante, p. 383.-Cal.
vesiculosa Say, Jour. Acad. Nat. Sci. Phil., iii, 80, 1 ; Compl. Wr., ii, 72 ; Wiedemann, Auss. Zw. Ins., ii, 245, 3; Williston, these Trans., ante, p. 384.-Penn., N. H., Mass., Ga.
? Myopu apiculis Walker, List, etc., iii, 679.
plebeia Williston, these Trans., ante, p. 384.-Ariz.
conjuncta Thomson, Engen. Resa, Dipt., 515.-Cal.
clausa Loew, Centur., vii, 72.-New Eng., Montana.

> I'merogmized species.
longicornis Say, Jour. Acarl. Nat. Sci. Phil., iii, 83 ; Compl. Wr., ii, 72 ; Wiedemann, Auss. Zw. Ins., ii, 245, 4 ; Williston, these 'Trans., ante, p. 386 (reproduction of Say's and Wiedemann's descriptions).-Mo.
obliquefasciata Macquart, Dipt. Exot. 1er Suppl., 141, 1; Williston, these Trans., ante, p. 385.-"Texas."
bistria Walker, List, ete., iii, 679.-N. Am. (Λ doubtful species.) vicaria Walker, List, ete., iii, 679.-Nova Scotia.

DALMANNIA.

Dalmami" Robinean-Desvoidy, Essai sur les Myodaires, 248, 1830.
Stechymice Macquart, Dipt. dn Nord, 1833.
Dutmumi, Rob.-Desvoidy, Myopaires, 1853.
Second, third and fourth segments of the abdomen with broad yellow hind margins, each with three projections directed forward.
Segments of the abdomen with narrow hind margin, each of which sends but a single median anterior projection. nigriceps.
picta Williston, these Trans., vi, 94 (8).-Ariz.
nigriceps Loew, Centur., vi, 71; Williston, these Trans., vi, 94 (8). -Comn., N. Y., D. C., Mont.

STYLOGASTER.

Stylorfaster Macquart, Hist. Nat. des Dipt., ii, 38, 1835; Dipt. Exot., ii, 3, 17, 1845.
Stylomyir Westwood, Proc. Zool. Soc. London, 1850, p. 270.
P'ychoproctus Bigot, Revie et Magaz. de Zool., No. 7, 1859.
Second joint of antenne short, third elongate.
neglecta.
Second joint nearly as long as the third.
biannulata Say, Jour. Acad. Nat. Sci. Phil., iii, 81, 3 ; Compl. Wr.,
ii, 72 (Myори) ; Williston, these Trans., vi, 93.-Penn., Conn. Myopu styluta Wiedemann, Auss. Zw. Ins., ii, 243, 2 (ex parte). Stylomyí confiasa Westwood, Proc. Zool. Soc. Lond., 1850, p. 271.
neglecta Williston, these 'Trans., vi, 91 (5).-Conn.

Explanation of Plate XLI.

Fig. 1.-Conops xanthopareus Will., female.
2.-Physoeophala tibialis Say, malo.
3.-Zorlion fulvifrons Say, femalo.
4.-Zodion pygineum Will., male.
5.-Oncomyia modesta Will., female.
6.--Myopa clansa Loew, fomato.
7.-Dalmannia picta Will., female.
8.--Stylogaster negleeta Will., fomale.

Errata.
Vol. vi, p. 94, line 22, for "first," read second. Same page, fourth line from bottom, for "Dalmumia" read Dalmania. Pago 95, line 7, for "triangular is " road triangles are.
X.-Third Catalogue of Mollusca recently admen to the Fauna of the New England Coast and the adjacent parts of the Atlantic, consisting mostly of Deep-Sea Species, witi Notes on others previously recorded. By A. E. Verrill.
[Published by permission of the U. S. Commission of Fish and Fisheries.*]
The exploration of the Gulf Stream region was continued last season, under nearly the same conditionst as in 1883, by the U. S. Fish Commission steamer Albatross, Lient. Z. L. Tanner, commander. The total number of stations occupied during the season was $141 . \ddagger$ During the five trips, between July 20 and Sept. 28, niṇety-three dredgings (at stations 2170 to 2262) were made. In most of these, a large beam-trawl was used very successfully, even at great depths.

Of these dredgings, 5 were in depths between 2000 and 2600 fathoms (4 successful); 20 were between 1000 and 2000 fathoms; 29 between 500 and 1000 fathoms; 8 between 300 and 500 fathoms; 16 between 75 and 300 fathoms; and 20 between 18 and 75 fathoms. The first trip was made while the steamer was on her way north from Norfolk, Va., and some of those stations were off the coast of Maryland, the most southern being in N. lat. $37^{\circ} 57^{\prime}$, but most of the others were sitnated in the region south and southeast of Martha's Vineyard, thongh some of them were a long way off the coast. The five stations in depths below 2000 fathoms were more

[^32]than half way to the Bermudas, and nearly east of the coast on Virginia, between N. lat. $36^{\circ} 05^{\prime} 30^{\prime \prime}$ and $37^{\circ} 48^{\prime} 30^{\prime \prime}$; and between W. long. $68^{\circ} 21^{\prime}$ and $71^{\circ} 55^{\prime}$.

At the end of the season, while on his way south, Capt. Tanner made another trip for the special purpose of exploring the shallow water regions in the vicinity of Cape Hatteras, where a very interesting famma had been discovered by the Albatross in 1883. On this trip the first three hanls (stations 2263 to 2265) were made off Chesapeake Bay, Oct. 18, in 70, 167, and 430 fathoms, with interesting results; and 45 stations (2266 to 2310) were occupied October 19 to 21, in the region off Cape Hatteras. Of these, one (No. 2300) was in 671 fathoms; four were in depths between 111 and 322 fathoms (Nos. 2266, 2299, 2306, 2310) ; six were between 50 and 80 fathoms; eight were between 30 and 50 fathoms; three, between 20 and 30 fathoms; and twenty-three, between 7 and 20 fathoms. This shallow water region yielded a rich harvest of shells and crustacea unknown on our Atlantic coast, including a considerable number of new forms. In the following list these shallow water mollusca, from less than 60 fathoms, are not included, but many of them will be enumerated in a subsequent paper by Miss K. J. Bush, who has been able to determine a large proportion of them. But there is still a large quantity of fine mixed bottom materials to be examined from the shallower dredgings.

The results this year were highly satisfactory, both in the way of physical observations and zoological discoveries. Large nmmbers of additions were made to the fauna, including representatives of nearly all classes of deep-sea animals. Many pelagic species were also secured in the surface nets, and especially in the trawl-wings. Among these there are some new forms and many others, including some Pteropoda and Heteropoda, that have not previously been observed so far north in the Gulf Stream.

Character of the deep-sea deposits.

Some very interesting and important discoveries were made in regard to the nature of the materials composing the sea-bottom under the Gulf Stream at great depths. These observations are very important, as regards the distribution of the animal life, which often depends directly upon the nature of the bottom, and of great interest from a geological point of view. Some of these observations are contrary to the experience of other expeditions, and not in
accordance with the generally accepted theories of the nature of the deposits far from land.

The bottom between 600 and 2000 fathoms, in other regions, has generally been found to consist mainly of "globigerina ooze," or, as in some parts of the West Iudian seas, of a mixture of globigerina and pteropod ooze. Off our northern coasts, however, althongh there is a more or less impure globigerina ooze, at such depths, in most localities beneath the Gulf Stream, this is by no means always the case. The ooze is always mixed with some sand and frequently with much clay-mud.

In a number of instances* the bottom between 500 and 1200 fathoms has been found to consist of tough and compact clay, so thoroughly hardened that many large angular masses, sometimes weighing more than fifty pounds, have been brought up in the trawl, and have not been washed away appreciably, notwithstanding the rapidity with which they have been drawn up through about two miles of water. In fact, these masses of hard clay resemble large angular blocks of stone, but when cut with a knife they have a consistency somewhat like hard castile soap, and in sections are mottled with lighter and darker tints of dull green, olive, and bluish gray. When dried they develop cracks and break up into angular fragments. This material is genuine clay, mixed with more or less sand, showing under the microscope grains of quartz and feldspar with some scales of mica. More or less of the shells of Globigerina and other Foraminifera are contained in the clay, but they make up a very small percentage of the material.

In other localities, in 1000 to 1600 fathoms, \uparrow the bottom is covered

[^33]with, or largely composed of, hard, very irregular, flattened, crustlike concretions of clay and iron-oxide, with more or less manganeseoxide in the crevices and worm-burrows with which they are fillel. At some localities a barrelfnl, or more, of such masses was brought up. They vary in size from a few ounces up to 20 pounds or more in weight, and from one inch to six inches in thickness. These masses afford attachments to many kinds of animals, inchuding several species of Brachiopods, Chitons, and other shells, which could not exist on bottoms of soft ooze or mud.
Rounded bowlders and pebbles of granite, gneiss and other crystalline rocks occurred at a number of stations. These, like the concretions of clay, etc., often afford attachment for deep-sea Brachiopods and other shells, as well as for corals, gorgonians, hydroids, sponges, etc. One bowlder, station 2208, is referred to above. The following are other localities: station 2195, in 1058 fathoms, N. lat. $39^{\circ} 44^{\prime}$, W. long. $70^{\circ} 03^{\prime}$. A romnded granite bowlder, about four inches in diameter. Its surface was covered with adherent species of foraminifera and some annelid-tubes. Station 2226, in 2021 fathoms, N. lat. $37^{\circ} 00^{\prime}$, W. long. $71^{\circ} 54^{\prime}$. A large number of pebbles and small, rounded bowlders of granite, porphyry, etc., and some coal cinders. The pebbles were more or less covered with adherent forminifera, bryozoa, etc. Scattered bowlders and pebbles have also occurred at many other localities along the inner edge of the Gulf Stream. These have probably all been carried ont there by the ice floating away from the adjacent coasts in spring.*
of irregular crusty and carernous coneretions and masses of ferruginous clay, with considerable black manganese-oxide lining the holes and cracks. The lower side of many of the masses consisted of sticky bluish clay. It was estimated that about a ton of this material came up. There were adhering to these hard masses some corals, gorgonians, hydroids and bryozoa, with the brachiopods, Discina Atlantica and Waldheimia cranium, in considerable numbers.

* A curious instance, quite unique in our experience, of the occurrence of abumbant relies of human handiwork was observed this year. At station 2222, in 1537 fathoms, N. lat. $39^{\circ} 03^{\prime} 15^{\prime \prime}$, W. long. $70^{\circ} 50^{\prime} 45^{\prime \prime}$, beneath the Gulf Stream, a large quantity of common bricks, with mortar and soot still adhering to them, was brought up in the trawl. Some were nearly entire, but most were in fragments. Annelid tubes, brachiopods, and other forms of deep-sea life were attached to them in small quantities, showing that they had not been on the bottom vory long. One of the Brachiopods, which ocenrred on the bricks in cousiderable numbers, is Atretia gnomon J., which had not heen proviously recorded from off our coast. Theso bricks may havo come from a wreck, or they may have formed the deek-furnace of some whaling vessel, thrown overboard on the homeward trip. At any rate, the aecident of hitting

In all our ten localities between 2000 and 3000 fathoms, the bottom has beeu "globigerina ooze." We have never met with the "red clay" which ought to occur at such depths, according to the observations made on the cruise of the Challenger.

The temperatures observed with the improved thermometers now used on the Albatross were between $36^{\circ} \cdot 4$ and $37^{\circ} \cdot 00 \mathrm{~F}$., in 2000 to 2600 fathoms. But temperatures essentially the same as these were also taken in 1000 to 1500 fathoms, and even in 965 fathoms one observation gave $36^{\circ} .8 \mathrm{~F}$. It follows from these observations that nearly the minimum temperature is reached at about 1000 fathoms in this region.

CEPHALOPODA.

Ancistrocheirus megaptera Yerrill, sp. nov.

Plate XLII, figures $1,1 \alpha$.
Body small, rather short, with an acute posterior end, extending a little beyond the posterior border of the fin. Fins very large, thick and strong, attached nearly the entire length of the body, and together forming a broad, rhombic figure, with the outer angles behind the middle; anteriorly the attachment of the fin does not reach quite to the edge of the mantle, and the front edge forms a slight rounded lobe in front of the attachment ; posteriorly the fins are nearly united, across the back, but leave the acute, posterior tip of the borly free for a short distance. The front edge of the mantle recedes in a broat curve ventrally, but has slightly prominent lateral lobes and a broad obtuse dorsal angle, which extends farther forward than the lateral ones. The head is rather large, with large eyes, furnished with thin free lids. The siphon is rather large, with two small dorsal bridles. The connective cartilages on its base are rather small, ear-shaped, much as in Ommotstrephes. The arms are rather large, not very unequal in size, the dorsal ones slightly smaller than the others; all are unusually rounded and most of them, in our specimen, have lost their tips. They all bear two alternating rows of small, prominent sharp claws, which are not very closely arranged. The inner face is not separated from the sides by a distinct margin. The tentacular
upon the precise locality of such relics is very curious. Otherwise than in this instance we have rarely found in deep water any human traces except coal cinders from steamers.
arms are wanting. Color, in alcohol, orange-brown, due to mumerons purple and brown specks scattered pretty uniformly over the surface, both above and below; the outer portions of the fius appear to have been transparent; the surface of the body appears to have been entirely smooth and destitute of tubercles, although the specimen is so much injured as to make this a little uncertain.

Length of body to front edge of mantle, 44^{mm}; length of free caudal portion, 6^{mm}; length of the attachment of fill, 34^{mm}; from front margin of fin to mantle edge, $3 \cdot 5^{\mathrm{mm}}$; breadth across fins, 56^{mm}; lengtl of head, from dorsal cartilage to base of dorsal arms, 19^{mm}; length of dorsal arms, 24^{mm}; diameter at base, 3.5^{mm}; diameter of lateral arms, 4^{mm}.

A single mutilated specimen (No. 40,128) was taken at station 2235, in 707 fathoms, 1884.

This species elosely resembles A. Veranyi, recorded from the Indian Ocean, but it apparently differs from the latter in having larger fins and in being destitute of the rows of tubercles on the manthe; the arms also appear to differ in their proportions.

Teleoteuthis (Onychia) agilis Verrill, sp. nov.
Plate XLII, fiqures 2, $2 a$.
Body elongated, rather slender, with a rather small candal fin, which is confined to about the posterior third of the body, and has a transversely rhombic form, with rounded angles and margins, the posterior edge is contimuons across the end of the body, without any noteh, and mited to the body to its extreme tip. The dorsal mantleedge is cut nearly square across, with only a faint angle in the middle; below each eye there is a somewhat prominent angle and the ventral side is regnlarly concave. The head is moderately large and the eyes are not very prominent. The arms are relatively long, prismatic, nearly equal in size and length, but the dorsal ones are somewhat shorter than the others. The third pair of arms are compressed and lave a somewhat prominent keel on the distal half. The arms bear two regular, well separated rows of moderately large, suckers, largest along the middle of the arms, becoming smaller proximally, and disappearing above the base. The suckers are swollen in the middle and the somewhat contracted horny rim has the margin entire or nearly so. The sucker-bearing face of the arms is rather broad and margined on each side by a marrow but distinct membrane. The tentacular arms are slender, longer than the sessile
arms, with the terminal club elongated and somewhat expanded. The club bears two central rows of prominent, incurved hooks, about twelve in each row, not connting the very small ones near the tips; the hooks in the lower row are much larger than those in the upper; alternating with these, along each margin, there is a row of sinall suckers, which extend to the extreme tip, becoming there very minute; towards the tips the hooks are reduced to a single median row. At the base of the clinb there is a group of six to eight small smooth suckers intermixed with small rounded tubereles. The inner face of the arm below the suckers is flat and white.

The color, in alcohol, is rather deep purplish brown, both above and below, but paler beneath ; it is due to rather large, rounded and very distinct, brown, orange and purple chromatophores. Similar chromatophores cover the onter surfaces of the arms, while the inner surfaces are specked with very dark brown ones.

Length from end of body to base of arms, 43^{mm}; to edge of mantle, 46^{mm}; to front margin of tin, 16^{mm}; breadth across fin, 21^{mm}; length of dorsal arms, 25^{mm}; length of second pair, 28^{mm}; length of third pair, 28^{mm}; length of ventral arms, 28^{mm}; length of tentacular arms, 30^{mm}; length of club, 12^{mm}; its breadth, 2^{mm}.

The name Teleoteuthis was proposed by me in 1881, in place of Onychic Les., becanse the latter was preoccupied for a genus of insects by Hubner in 1816.

One specimen (No. 40,129), was taken at the surface at station 2225, off Chesapeake Bay.

Benthoteuthis, gen. nov.

Body rather short, well-rounded, oblong, blunt posteriorly. Fins small, romded, with a narrow insertion, situated close to the posterior end. Head broad. Eyes large, with distinct lids and small anterior sinus. Siphon short and wide, in a smooth groove, without bridles, internal valve well-developed. The dorsal mantle-edge is free, with an obtnse median angle, projecting over the back of the head. Arms small and short, the dorsal ones shortest; the lateral ones keeled externally; web rudimentary; marginal membranes on the inner angles narrow. Suckers small, crowded, apparently in four rows. Tentacular arms long and slender, the sucker-bearing portion scarcely enlarged, bearing numerous minute, subequal suckers in many rows.

The pen is very thin, expanded into a broad lanceolate blade posteriorly, very slender, with the edges incurved so as to form a groove
in the middle portion, becoming gradually a little wider to the anterior end, which is thin and pen-like in form. The posterior tip is imperfect in the specimen dissected.

The comective cartilages on the sides of the mantle are simple, elongated, broadest posteriorly, tapering anteriorly, and somewhat curved downward in the middle, with a long, narrow, simple central fosse. The connective cartilages on the sides of the mantle are low, simple, longitudinal ridges, running back from the lateral angles of the mantle-edge. In the female there are two pairs of oblong, flattened nidamental glands, one pair on the ventral side below the heart, the other pair a little farther forward, lying between the gills and intestines and surrounding the oviducts, which are symmetrically developed, one on each side. The ovary is large, ocenpying the posterior ventral portion of the body-cavity.

This interesting genus shows, in several respects, marked embryonic or primitive characters, recalling the young stages of Ommastrephes and Loligo. These are seen especially in the small size, posterior position and form of the fins; in the form of the body, head and mantle; in the small short arms, with the dorsal pair shortest; in the small simple suckers; in the want of differentiation of the tentacular chub and the uniformity of its minnte suckers. The affinities of the genus are probably with the group represented by Ommastrephes, as shown by the distinct eye-lids and sinus, and by the character of the connective cartilages of the mantle. The pen, however, is somewhat like that of Loligo in form, lut the form of the pen appears to be of little value in determining the affinities of the squids.

Benthoteuthis megalops Verrill, sp. nov.

$$
\text { Plate Xliv, flgure } 1 .
$$

Body rather short, thick, romded, tapering slightly from the anterior margin backward; posterior extremity bluntly rounded; fins small, situated close to the end of the body, attached by rather short bases to the sides of the body, nearest the dorsal side, but not mited to the end of the body posteriorly. The fins are somewhat rounded in outline, projecting both forward and backward beyond their hasal or attacher portion, the free posterior margin extending backward as far as or beyond the end of the body, which shows, in a doreal view, as a rounded lobe between the fins. The anterior margin of the mantle extends far forward over the back of the head, which it partially conceals; on the dorsal side there is a sliglitly prominent,
angular, median lobe; at the eyes the lateral margin recentes in a broad curve, but projects forward in an angular point below each eye, while the ventral portion is cut away in a broad curve, so as to expose the tip of the siphon. The head is short, broad, swollen laterally, owing to the large size of the eyes, which are furnished with free lids, having a small angular sinus in front. The siphon is short and broad, with a smooth, shallow cavity behind it, without any distinct brides; within, it has a well-developed valve.

The arms aresmall and short, the ventral ones largest and longest; the two lateral pairs are nearly equal; the dorsal pair decidedly the shortest and smallest. The arms are mited at the base by a rudimentary web; they are somewhat angular at base and taper somewhat rapidly to slender tips; the imner surface is thickly covered with very small suckers, which appear to form about four irregular rows. The lateral arms have a narrow, membranous keel along the outer side, and all have narrow marginal membranes along the suckerbearing surface. The tentacular arms are very long and slender, many times the length of the sessile arms, but more slender; they are rounded and of nearly uniform size throughout; the sucker-bearing portion is neither expanded into a club nor distinctly tlattened, but bears a large number of very minute suckers arranged in many rows along the imer surface, the number of rows diminishing proximally.

Color, in alcohol, dark reddish brown over the entire surface of the body, bead, and sessile arms, with the tentacular arms yellowish white. The color is due to very mumerous and densely crowded chromatophores of rather large size. The color is most intense on the upper surfaces of the head and sessile arms ; the lower side of the body is somewhat paler than the upper side. The eyeballs outside of the pupil are dull blue.

Length of a female specimen, from the posterior end to the anterior dorsal edge of the mantle, 57^{mm}; from the posterior end of the body to the anterior insertion of fins, 9^{mm}; to the posterior insertion, $2.5^{\text {mim }}$; length of fin, 7^{mm}; breadth across both fins, about 26^{mm}; breadth across mantle anteriorly, 21^{mm}; length of head from lorsal cartilage to base of dorsal arms, 17^{mm}; from anterior edge of mantle to base of dorsal arms, 8^{mm}; length of dorsal arms, 20^{mm}; length of second pair, 23^{mns}; length of third pair, 23^{mm}; length of ventral arms, 25^{mm}; length of tentacular arms, 85^{mm}; greatest diameter, 2^{mm}; length of sucker-bearing portion, 13^{mm}; its diameter, about 1^{mm}.

Off Martha's Vineyard, at stations 2189 and 2205, in 600 and 1,073 fathoms (Nos. 39,967 and 39,968).

Cirrhoteuthis plena Verrill, sp. nov.
Plate XLII, figure 3.
Body broad, thick and short, broadly romded posteriorly, with the lateral fins inserted well forward, just behind the eyes, their front edges a little behind the gill-opening. The fins are large, thin and broad, with the edges nearly parallel to near the end, which is broadly rounded. The head is as broad as the body and very short. The eyes are relatively small, wide apart, situated in line with the siphon transversely; the lids, in alcohol, are slightly thickened and surround a small elliptical opening. The siphon-tube is small, but prominent and well-developed, expanding to the base. The gillopening is small and simple, in breadth only slightly exceeding the breadth of the hasal part of the siphon.

The arms are long, rather stout, the four upper ones decidedly longer than the four lower, the ventral ones shortest. They are united by a thick, strong web, which, on the upper side between the dorsal arms, extends about two-thirds the length of the arms. It decreases in width between the lateral arms. Between the third and fourth pairs it is about one-half the length of the ventral arms, and between the ventrals about one-third their length. The suckers are rather large for the group, largest at about the basal third, those near the mouth becoming very small. They are arranged rather close together in a single linear series, but sometimes show a slight tendency to become alternate at the basal third of the lateral arms; they are usually separated along the center of the arms by spaces about equal to their own diameter. There are about fifty-five suckers on the dorsal arms, of which about thirty occupy the portion within the web. The tips of the arms, when perfect, are rapidly tapered, rather thin and not much elongated, and bear fifteen to twenty small suckers, which are here nearly in contact. The cirri are rather short, tapered, acute, and usually stand nearly opposite the suckers, forming a row on each side, along the imer face of the arm.

The color of the borly and external surface of the web, in alcohol, is a yellowish flesh-color, with a somewhat translucent, gelatinous appearance, with the darker internal organs showing through more or less distinctly. The fins are deep brown, darker towards the tips. The imer surfaces of the arms and web with the cirri, are dark purplish brown, while the suckers are dull brownish yellow.
'Total length, $185^{\text {min }}$; length of body to gill-opening, $55^{\text {mm }}$; length to base of ventral arms, 70^{mm}; breadth of body between bases of
fins, 58^{mm}; length of fins, 32^{mm}; their breadth near base, 24^{mm}; total breadtl: from tip to tip of fins, 130^{mm}; diameter of eye, 12^{mml}; breadth of gill-opening, 12^{mm}; length of siphon, 14^{mm}; length of dorsal arms, 125^{mm}; length of web between dorsal arms, 700^{mm}; length of second pair of arms, 120^{mm}; length of web between dorsal and first lateral arms, 60^{mm}; length of the third pair, 110^{mm}; length of web between third and fourth pairs of arms, 55^{mm}; length of fourth pair of arms, 95^{mm}; breadth of web between the rentral arms, 35^{mm}; diameter of largest suckers, 2.5^{mm}; length of longest cirri, 3 to 4^{mm}.

A single specimen in good condition was taken at station 2205, N. lat. $37^{\circ} 35^{\prime}$, W. long. $71^{\circ} 18^{\prime} 45^{\prime \prime}$, in 1,073 fathoms, gray oozze, bottom temperature 38° F., Angust 20, 1884. (No. 39,908.)

Cirrhoteuthis megaptera Verrill, sp. nov.
Plate XLIII, figures 1, 2.
Body small, very short, depressed, broadly rounded posteriorly, broader than long. Fins very long and narrow, their length considerably exceeding the breadth of the body, in alcoholic specimens; toward the base they are moch thickened and supported by an internal cartilage, which does not appear to be continuous with the thin cartilage that extends across the body, just behind the fins. The fins are inserted just behind the eyes, and their breadth is somewhat greater in the middle than at the base; they narrow but little toward the tip, which is obtusely rounded. Head large and broad, exceeding the body in size and thickness in the preserved specimens, the greatest thickness being at the base of the arms. Eyes small, lateral, very far apart, the distance between them being, on the dorsal side, more than twice their diameter. Siphon short, conical, with a hroad base. Gill-opening small, simple, only a little broader than the base of the siphon. Arms long, thick and strong, the dorsal ones a little longer than the others, which decrease successively to the ventral pair, which are, however, but little shorter than the third pair. The arms are thick and well rounded, especiaily on the basal portion, with the inner surface elevated along the median line, on which the suckers are arranged in a simple row; the marginal angles are but slightly indicated, and bear a row of small, slender, tapering cirri, alternating with the suckers, which are very small, urceolate, strongly elevated above the surface of the arms, and of a light yellow color, in strong contrast with the chocolate-brown of the arms. The distance between the suckers along the middle portion of the arm usually
considerably exceeds, and is often double their diameter, but varies with the state of contraction of the arms ; at the base of the arms they diminish in size and become more crowded; towards the ends they diminish very gradually, finally becoming very small and closely arranged. The web between the arms is very thick, swollen at the base, and on the florsal side extends more than half the length of the arms; it is successively a little shorter between the lateral arms, and still shorter between the ventral ones. The color of the body and fins in the alcoholic specimens is bluish white, covered with rather large and irregnlarly arranged specks and spots of purplish brown. The same color extends more or less on the head, becoming paler and more gelatinous or translucent on the web at the base of the arms, through which the dark brown color of the arms can be distinctly seen. The arms, the outer portion of the web, and its entire imer surface are dark chocolate-brown. The suckers are yellowish white, with brown rims.
Total length, in alcohol, $10 \imath^{\mathrm{mm}}$; length of body to gill-opening, 25^{mmn}; breadth of body at base of fins, 20^{mm}; total breadth across outstretched fins, 68^{mm}; length of fins from base to tip, 24^{mm}; breadth aeross middle, 9^{mm}; at base, 8^{mm}; breadth of head at the eyes, 27^{mm}; across base of arms, $30^{\text {nm }}$; diameter of eyes, 9^{mm}; breadth of gillopening, 8^{mm}; length of siphon, 8^{mm}; length of dorsal arms, 95^{mm}; breadth in middle, 6.7^{mm}; diameter of largest suckers, 1^{mm}; length of the longest cirri, 2^{mm}; length of second pair, 85^{mm}; third pair, 80^{mm}; ventral pair, 78^{mm}; extent of web between dorsal arms, 45^{mm}; between first and second pairs, 42^{mm}; between the third and fourth, 32^{mm}. The other specimen of this species has the body and head of nearly the same size, but these parts may be more contracted by the alcohol; the fins and arms are somewhat louger and larger. The length of one of the fius is 33^{mm}; its greatest brealth, 11^{mm}; breadth across eyes, 22^{mm}; diameter of eyc, 8^{mm}; diameter of largest sucker, less than 1^{mm}.

The sex of the two speciunens described above is uncertain. There is no positive appearance of hectocotylization in any of the arms, but in the specimen first described the left arm of the second pair has a blunt, pale tip, before which the suckers cease abruptly, yet this is most likely due to the early stages of the reproduction of a new tip.

Sketches of this species were made by Mr. A. Baldwin, on the steaner, when the specimens first came up and had some life. From his sketches the figures on plate xliii have been made.

In the living state, according to these and other sketches, the fins
are much larger and broader, with the end more rounded; and the anterior elge is thinner and more convex, than after preservation in alcohol, though the length is not much greater in proportion. The web appears broader, and the arms longer. In one specimen, from station 2224, the body is more elongated behind the fins than in the others, while the long and very broad fins are placed some distance back from the eyes, or about midway between the eyes and the end of the body, and the weh does not extend half the length of the arms. It was at first thonght that this individual might represent another species, but these ereatures are evidently capable of changing their forms and proportions to a great extent, according to the state of contraction of their various parts.

Both the larger speeimens of this species have a curious appendage on most, if not all, of the arms. This is a fleshy, tentacle-like process, with a somewhat thickened base, and a tapering, acute tip. It is situated at about the distal third of the arm, on the posterior side, near the edge of the web, and diverges widely from the arm. In one specimen this is present on all the arms of the left side and on two of those on the right side. On the other arms they probably have been destroyed, the arms being injured. The length of this organ is about equal to the breadth of the arms. When perfect these organs, which are muscular, were prolsably united to the web, and served to support or strengthen it. I am not aware that an organ of this kind has before been observed among the Cephalopods. But it may, perhaps, correspond to one of the transverse supports of the marginal membranes of Sthenoteuthis and Ommastrephes.

Two specimens (No. 39,963) were taken at station 2,225, N. lat. $36^{\circ} 05^{\prime} 30^{\prime \prime}$, W. long. $69^{\circ} 51^{\prime} 45^{\prime \prime}$, in 2,512 fathoms, on yellow ooze, bottom temperature $37^{\circ} \mathrm{F}$.; and two at station 2,224 , N. lat. $36^{\circ} 16^{\prime}$ $30^{\prime \prime}$, W. long. $68^{\circ} 21^{\prime}$, in 2,574 fathoms, globigerina ooze.

A small, specimen, from station 2,220 , appears to be a younger stage of this speeies, with which it agrees, in the small, short body; the narrow, elongated fins, and the comparatively small eyes, as well as in the chocolate-brown color of the inner surfaces of the arms and web; but the external surfaees of the body, web and arms are also strongly colored with deep brown. The arms in this specimen are nearly equal in length, the ventral ones, being a little shorter than the others. The web appears to extend farther toward the tips of the arms than in the larger examples, but this may be due to better preservation. The suckers are small, prominent, and closely arranged.

Trans. Conn. Acad., Vol. VI,

The total length of this specimen is 43^{mm}; posterior end of body to gill-opening, 13^{mm}; breadth of body at fins, 13^{mm}; lengrth of fins, 9^{mm}; breadth, 4.5 mm ; breadth of head across eyes, 17^{mm}; diameter of eye, 7^{mm}; from center of eye to tip of dorsal arms, 34^{mm}; to edge of web between dorsal arms, 23^{mm}; to tip of lateral arms, 31^{mm}; to edge of lateral web, 21^{mmm}.

Station 2,220 , N. lat. $39^{\circ} 43^{\prime} 30^{\prime \prime}$, W. long. $69^{\circ} 23^{\prime}$, in 1,054 fathoms, (No. 39,916).

This species appears to be closely related to C. plenc in most respects, but has a very much smaller and shorter body, larger and relatively much longer fins, and the eyes are relatively smaller. The suckers are also smaller, more prominent, and less closely arranged, while the cirri are somewhat longer and more slender. The color of the body and arms is also much darker, and the texture less gelatinous.

Opisthoteuthis Agassizii Verrill.

Supplement to the Cephalopoda of the Blake Exp., p. 113, pl. 1, fig. 1, pl. 2, fig. 1, Bull. Mus. Comp. Zool., vol. xi, No. 6, 1883.

A specimen apparently belonging to this remarkable species was taken at station $2,196, \mathrm{~N}$. lat. $39^{\circ} 35^{\prime}$, W. long. $70^{\circ} 03^{\prime}$, in 1,058 fathoms, green mud and stones (No. 39,915). Although in good condition when taken, it was accidentally left too long in sea-water until decomposition had commenced, consequently the greater part of the body and the contained viscera were destroyed. The body seems to have been short and rounded. The lateral fins are narrow, elongated, slightly broadest in the middle, tapered to the blunt tips, with the edges thin. They are situated just behind and in contact with the posterior side of the eyes. The eyes are exceedingly large, occupying nearly the whole breadth of the head, nearly spherical, with the exterual opening rather large, and with a thin lid on the lower side. The siphon is prominent, elongated, somewhat tapered, and projects backward and upward behind the posterior end of the body. The gill-opening is moderate in size, simple, with a thin, brown margin, and is situated between the siphon and the postero-ventral surface of the body, so that it opens upward and backward, when the creature is in a creeping position. The arms are nearly equal in size and length, not very long, but with slender tips, moderately stout, especially toward the base, well ronnded, the inner face withont any well-defined margins. The web, as preserved in alcohol, extends
about half the length of the arms, and is nearly equal all around, but is, perhaps, a little broader between the dorsal arms. The suckers are small, yellowish white, a little prominent, arranged rather closely in a single median row. The largest ones are near the base of the arms, about the fifth to the eighth from the base; beyond these they decrease regularly to the tips of the arms, where they become small and close. The cirri are rather small, tapered, acute, placed alternately with the suckers and not very far from them, the interval being about equal to the diameter of the suckers; they commence between the fifth and sixth suckers, and apparently continue to the tips of the arms, becoming gradually very small. On each of the arms there are thickened muscular appendages, similar to those of the preceding species, but shorter and broader. They arise from the posterior face of the arm, nearly at right angles, at the point near where the interbrachial web joins (or becomes) the marginal membrane of the arm, and are closely united to the web, appar ently serving to strengthen it. Their length is about equal to the breadth of the arm.

The color, so far as preserved in alcohol, is deep chocolate-brown on the inner surface of the arms and web, with a median band of somewhat darker brown occupying the inner face of the arms. On the upper surface of the web, head, and body the color is destroyed, but it appears to have been brown.

Length of longest arms, 66 to 70^{mm}; breadth of arms near base, 7^{mm}; breadth of head across eyes, 26^{mm}; diameter of eyes, 14^{mm}; length of fins, 11^{mm}; breadth, 6^{mm}; length of arms from edge of intermediate web, 35^{mm}; diameter of largest sucker, 1^{mm}; length of cirri, $2^{m m}$.

Stauroteuthis syrtensis Terrill.
Amer. Journ. Sci., xviii, p. 468, 1879, Trans. Conn. Acad., v, p. 382, pl. 32, figs 1 -5, 1881 ; vi, p. 249, 1883.

A small specimen, apparently identical with this species, was taken at station 2,180. In this the body is small, narrow, somewhat elongated or ovate in form, while the arms are very much elongated, with a very broad, loose web extending nearly to the end. The cirri are very long and slender, thread-like. The suckers are rather small, little elevated, and wide apart. 'The fins are relatively large, broadest at the base, which is placed well forward, lanceolate in form, tapering toward the end, which is blunt. The eyes are moderately large,
not very far apart, the head being narrower than in most of the related forms. The gill-opening is a small, rounded pore, with a thickened margin, situated abont opposite the eyes. The siphon is not visible; it may have been broken off, or may be retracted. The whole texture is extremely soft and gelatinons. The color of the external surfaces is translucent dull bluish gray ; the imner surfaces of the arms are tinged with chocolate-brown.
The total length is about 125^{mm}; posterior end of body to gillopening, 20^{mm}; breadth of body at fins, 14^{mm}; breadth across eyes, 14^{mm}; diameter of cyes, 6^{mm}; length of fins, 12^{mm}; breadth at base, 9^{mm}; length of longest arms from center of eye, 107^{mm}; to edge of web, 74^{mm}; length of cirri, about 10^{mm}.

Station 2,180, N. lat. $39^{\circ} 25^{\prime} 50^{\prime \prime}$, W. long. $71^{\circ} 49^{\prime} 30^{\prime \prime}$, in 523 fathoms, bottom temperature, 39° F. (No. 39,965).

Egys of Cirrhoteuthis or Stauroteuthis.

Very peculiar eggs, belonging to cephalopods of this group, have often been dredged by us in deep water. They are usually attached to the stem or branches of Acanella Normani or other gorgonians. Similar eggs were often formd attached to the same corals brought in from the deep, water of the northern fishing banks by the Gloncester halibut fishermen, since 1879. None of these contained embryos sufficiently developed to render their identification possible, until some were dredged last summer, at station 2209, in 1,080 fathoms (No. 39,961), containing well-formed embryos, so far developed as to show that they belong to Cirrhoteuthes or some closely allied genus. These embryos have a well-developed body, rounded behind, with relatively large, rather broad lateral fins, having the outer ends broadly rounded, situated far forward and as long as the breadth of the body. The eyes are relatively large and prominent, or somewhat stalked. The arms are slender, rounded, with a simple close median row of small suckers. The web is but little developed, the arms being free nearly to the base. The siphon-tube is prominent and the gill-opening is simple and small, but relatively larger than in Stuuroteuthis syrtensis. It is probable, therefore, that this embryo belongs to one of the species of Cimhoteuthis described above. The eggs may belong to more than one species, but show no tingible external differences.

These eggs are contained in a strong but flexible case, about an inch long, elliptical ${ }^{\circ}$ in form, but often somewhat irregular on the
sides that are attached to the coral-branches which are usually so deeply imbedded that they seem to pass through the side of the ease. The immer surface of the case is smooth, but the outer surface is more or less rough and uneven, and usually covered with a thin adherent coat of greenish mud. The egg itself is much smaller than the interior of the case. It is covered with a firm, smooth, transparent shell. The form is usually a pretty regular ellipsoid, sometimes varying to ovate. The color is orange or salmon.

The egg-cases are from 20^{mm} to 26^{mm} long; 14 to 17^{mm} broad. The eggs in alcohol are 15^{mm} long; diameter, 12^{mm}. Another one is 16^{mm} long; 11^{nmm} in diameter.

These eggs have been dredged at stations 2051, 2072, 2205, 2209, 2210,2212 , and in other localities, in 428 to 1,106 fathoms.

GASTROPODA.

Pleurotomella Jeffreysii Verrill, sp. nov.

Plate XLIV, figure 3.

Shell rather large, elongated fusiform, with a tall, acute, turreted spire, consisting of about seven whorls besides the nucleus, which contains about four brown whorls. The whorls have a rather conspicuous shoulder, below which they are flattened, but above it they have a broad, sloping, decidedly concave, subsutural band. The suture is distinct, but not at all impressed, owing to the flattening of the whorls. The sculpture consists of a row of prominent, oblique, elongated nodules at the shoulder ; those on the upper whorls relatively more prominent and angular than on the lower ones; these nodules are continued downward in the form of slightly raised, obliquely curved ribs, which extend nearly across the upper whorls, but fade out a short distance below the suture on the lower ones. The whorls are also crossed by distinct lines of growth which curve strongly forward on the middle of the last whorl and recede in a strong regular curve on the subsutural band, where they are numerous and fine, but on the upper whorls part of them become more prominent near the suture. The whorls below the shonlder are also covered with numerons, impressed, regular, revolving grooves, separated by intervals of somewhat greater width; these revolving furrows are crossed by the lines of growth in such a way as to make them wary or crinkled. The revolving lines are mostly absent above the
shoulder. The nucleus, which consists of four whorls, is chestuntbrown in color, large, regularly tapered, very acute, the apical whorl being very minute, but regularly coiled; the three lower nuelear whorls are very minutely decussated by two sets of very fine, oblique lines. The aperture is long, rather narrow, with the posteror end acutely angled; the siphon is nearly straight, rather long and narrow. The columella is nearly straight; the onter lip curves strongly forward in the middle and has a rather broad and deep, rounded sinus situated a little below the suture.

The entire shell below the nueleus is translncent bluish white in live specimens, and the surface is lustrous.

Length of the largest specimen, 52^{mm}; breadth, 18^{mul}; length of last whorl in front, 36^{mm}; length of aperture, 27^{mm}; its greatest breadth, 8^{mm}; length of muclens, 2^{mm}.

The largest specimen, which was dead, occurred at station 2,230 , in 1,168 fathoms (No. 44,650) ; a smaller, living specimen (No. 44,649), was taken at station 2,222 , in 1,537 fathoms.

This fine species is named in honor of Mr. George Gwyn Jeffreys, the distinguished conchologist.

Pleurotomella tincta Verrill, sp. nov.
Plate XliV, figure 4.
Shell moderately large, somewhat stout, nearly regularly fusiform, rather thin, delicate and translncent in texture, in the living specimens having a light chestnut-brown color and a lustrous surface. The spire is rather short, rapidly tapered, acute. The largest specimen consists of five whorls besides the nuclens, which apparently contains about two and one-half whorls, but is eroded in both of our specimens.

The whorls of the spire have a distinet, nodulous shonlder and a broad, sloping, concave subsntural band, ocenpying about one-half the breadth of the whorls; on the last whorl the shoulder is convexly rounded and destitute of nodules, but is crossed by numerous, distinet, flexnons lines of growth which rise into distinct, sharply raised riblets on the subsutural band just below the suture; the surface is also covered, except on the subsutural band, by numerous small, regular, sharply impressed grooves, whieh appear a little wavy or crinkled, owing to the crossing of the lines of growth; the grooves are separated by smooth, flattened interspaces exceeding their own width. On the preeding whorls the nodules on the shoulder are
prolonged downward obliquely in the form of small riblets, which, on the subsutural band, become strongly excurved, thinner and more sharply raised; these whorls are also sculptured by a few, distinct, raised, spiral lines, both below the shoulder and on the lower part of the broad subsutmal band. The nucleus appears to have been regnlarly tapered and finely cancellated, but is eroded in both specimens. The aperture is rather large, elongated, fusiform, with an acute posterior angle and a short, straight canal a little constricted at the base; the columella is nearly straight, with its edge only slightly simnons.

The color of the shell within is dull flesh-color, with a patch of brown on the columella; externally the color is brownish salmon or pale chestnut-brown.

Length of the largest specimen, 22^{mm}; greatest breadth, 11^{mm}; length of body-whorl in front, 17^{mm}; length of aperture, 14^{mm}; greatest breadth, $4^{\text {mm }}$.

The living specimen (No. 44,652), described above, was taken at station 2,225 , in 2,512 fathoms, N. lat. $36^{\circ}, 05^{\prime}, 30^{\prime \prime}$; W. long. 69°, $51^{\prime}, 45^{\prime \prime}$. A smaller, dead specimen (No. 44,651), oceurred at station 2,224 , in 2,554 fathoms.

This speeies bears considerable resemblance to P. Emertoni V. in form and general appearance, but differs very deeidedly in color and the details of its sculpture.

Pleurotomella Frielei Verrill, sp. nov.

Plate XLIV, figure 5.

Shell of moderate size, rather thick and solid, elongate-ovate or subfusiform, with a rather long, regularly tapered spire, consisting of about six whorls below the nucleus, which is small and consists of two or more whorls, eroded in our specimens. The whorls of the spire are a little convex and slightly angulated or shouldered just above the middle, and have a rather broad, slightly concave subsutural band; the last whorl is more evenly convex and the shonlder is rounded and rather indistinct.

The surface is covered with numerous rather fine, flexuous riblets, parallel with the lines of growth; these curve forward on the middle of the whorl below the shoulder, but are strongly excurved in crossing the subsutural band, and become thin and more prominent just below the suture, which is distinctly impressed. The surface is also covered with very numerons thin, revolving cinguli, which are sepa-
rated ly intervals of about the same width; these extend over the sulsutural band, but are there a little less prominent; on the convex part of the whorls they are wavy and irregularly decussated by ithe lines of growth; on the spire the two sets of lines produce a cancellated structure. The aperture is short and rather "broad, 'with an acute angle posteriorly and a short, broad, straight canal in front; the columella is short, nearly straight, with the inner edge strougly sinuous and obliquely cut away at the end. The inner lip is strongly excavated at the base of the columella; the onter lip is regularly curved, except above the shoulder, where it is slightly flattened and sloping; in the middle it projects considerably forward in a broad curve, but the posterior sinus is broad, rather deep, well-ronnded, and deepest just above the shoulder.

Color, grayish or yellowish white extermally, bluish white within; in one specimen with a conspicnons reddish brown pateh on the columella margin.

Length, 22^{mm}; greatest breadth, 10^{mm}; length of body-whorl, in front, 15^{mm}; length of aperture, 11^{mm}; breadth of aperture, 5^{mm}.
Two living specimens (No. 44,653), were taken at station 2,208, in 1,178 fathoms, N. lat. $39^{\circ} 33^{\prime}$; W. long. $71^{\circ} 16^{\prime} 15^{\prime \prime}$.
This species is named in honor of Mr. Herman Friele, the able conchologist of the Norwegian Arctic expeditions.

Pleurotomella vitrea Verrill, sp. nov.
Plate xliv, figure 6.
Shell small, thin, delicate, translucent bluish white, rather stout, fusiform, with angular whorls and an acnte spire. Whorls four and one-half, besides the nuclens, which is small, acute and consists of about three chestnut-brown whorls. The whorls of the spire are angulated and somewhat carinated at about the middle, where there is a band of angular tubercles. The subsutural band is broad, slop ing, flattened or sometimes distinctly concave, and occupies more that half the breadth of the whorls.

The sculpture consists of about twelve to forrteen oblique, somewhat angular and prominent transverse ribs, separated by broader, concave intervals, rising at the shoulder into small angular tubercles, on the subsutural band becoming much swaller and strongly excurved in the middle, like the lines of growth, and rising into small, sharp, lamella just below the suture. The surface is also covered with very distinct, raised, revolving cinguli, separated by
intervals usually considerably exceeding their breadth, but becoming narrower at the base of the canal, much smaller and less distinct on the subsutural band and usually absent on its upper part. On the lower whorls of the spire there are usually about four of the larger revolving einguli, of which the uppermost forms the carina at the shoulder; they cross alike the ribs and their intervals, often rising into little tubercles in crossing the ribs. The nuclens is small, regularly tapered, very acute, the flrst whorl being very minute; its whorls are minutely reticulated by two sets of fine, oblique lines. The aperture is fusiform, with an acute posterior angle and a strongly excavated inner margin; the outer lip is thin, somewhat angulated at the shoulder, with a broad, shallow simus just abore it. The canal is a little elongated, tapered, slightly constricted at its base by the slight incurvature of the outer Iip. The columella is nearly straight, with a strongly sinuated inner margin. The surface is lustrous and the texture somewhat vitreons, with a bluish white tint. There is no operculum.

Length, 8^{mm}; breadth, 5^{mm}; length of aperture, 5^{mm}; its breadth, 2^{mm}. A somewhat more slender specimen measures in length, 9^{mm}; in breadth, $4 \cdot 6^{\mathrm{mm}}$; length of body-whorl, 7^{mm}; length of aperture, $5 \cdot 5^{\mathrm{mm}}$; breadth, $2 \cdot 3^{\mathrm{mm}}$.

Station 2,212, in 428 fathoms, one living specimen (No. 44,654); station 2,213 , in 384 fathoms, two living specimens (No. 40,472).

This delicate species has a general resemblance to several others of this genus, such as P. bandella Dall., P. Sandersoni V., and the young of P. Agassizii, but it differs from all these in its more delicate texture, greater transparency, and small, very acute nucleus, as well as in the details of its sculpture. Its subsutural band is unusually broad, and the whorls are decidedly angulated in the middle.

Pleurotomella Lottæ Verrill, sp. nov.

Plate XLIV, figure 7.

Shell small, short, ovate-fusiform, moderately stont, with slightly shouldered, convex whorls, and a regularly tapered, acute spire. Suture shallow, but well-marked. Whorls about four and one-half, besides the large nucleus, which consists of about three and one-half gradually increasing whorls. The whorls of the spire are obscurely shouldered at about the middle, above which the broad, sloping subsutural band is slightly concave.

The sculpture on the peniltimate whorl consists of about six elevated, rounded, revolving cinguli, with some much finer intermediate
ones; some of the smaller cingnli are also fomd on the subsutural band. The transverse sculpture consists of fine, slightly flexuous lines of growth, crossing both the cinguli and their intervals, and on the subsutural band becoming more prominent in the form of oblique, recurved riblets, which do not take the form of nodules. On the last whorl the revolving cinguli contime at abont uniform distances over the entire whorl and canal, but anteriorly the cinguli thicken and are wider than the grooves, while on the convex part of the whorl they are narrower than the intervals.

The aperture is broad-ovate, rather large, acute posteriorly; the onter lip is thin, strongly convex in the middle, with a broad and shallow posterior sinus above the shonlder. The canal is short, straight, not contracted at the base. The columella is straight in the middle, with an oblique anterior edge; the imer margin of the aperture is strongly excavated and subangular at the base of the columella. Umbilicus none. The animal is destitute of an opereulnm.

The nuclear whorls are deep chestmut-brown, very minutely reticulated by oblique lines rumning in two directions. The whorls are regularly convex, the apical ones minute and a little prominent, so that the apex is acute.

Color of the shell below the brown mucleus translacent bluish white, with a somewhat glossy surface; when dead, yellowish white.

Length of the typespecimen, 11^{mm}; breadth, 7^{mm}; length of bodywhorl and canal, $7 \cdot 5^{\mathrm{mm}}$; length of nperture, 6^{mm}; its breadth, $2 \cdot 8^{\mathrm{mm}}$. Another somewhat larger and stouter specimen is 11.5 mm long; breadth, 7.5^{mm}; length of body-whorl and canal, 8^{mm}; length of aperture, $6 \cdot 3^{\mathrm{mm}}$; its breadth, $3 \cdot 8^{\mathrm{mm}}$.

Station 2,221, N. lat. $39^{\circ} 05^{\prime} 30^{\prime \prime}$, W. long. $70^{\circ} 44^{\prime} 30^{\prime \prime}$, in 1,525 fathoms; two specimens (No. 40,498).

This shell bears little resemblance to any of our other species except P. Bruneri. It differs from the latter in having a higher and more acnte spire, with the whorls less strongly shonldered and the subsutural band much less convex; the canal is shorter; the aperture relatively broader, and the imer margin more excavated at the base of the columella; the spiral cingnli are fewer, stronger, more prominent, and more sharply cut; the transverse lines are less strongly recurved in crossing the snbsutural band, but become more prominent close to the suture; the posterior sinus of the lip is much shallower and less distinct; the nuclens is similar in the two forms, but is a little more acute in the present species. From all the other species it differs so widely that no detailed comparison is necessary.

This beautiful and delicate species is named in honor of Miss Charlotte E. Bush, one of the excellent assistants who have aided me in my work on the conchological collections of the U. S. Fish Commission.

Gymnobela brevis Terriil, sp. nov.
Shell small, short, stout, with a short, turreted spire, having squarely shouldered lower whorls. The nucleus is eroded in all of our specimens, hat apparently consist of three whorls, which rapidly enlarge, the third having its surface covered with regular spiral lines crossed by slight thin ribs; on the next whorl the revolving lines become more prominent, abont four of them situated below the shoulder, which is sloping, and one or two above it ; these are crossed by longitudinal ribs of about the same size, producing a decussated structure. On the last whorl the spiral lines become thicker and stronger and the ribs become stouter, more elevated and obtuse, separated by wider intervals, and mu down somewhat obliquely and fade ont at abont the middle of the whorl; the spiral lines form minute nodules in crossing the ribs; above the shoulder, which is strongly angular, the ribs are thin, only little raised, and beud obliquely forward withont much chrvature on the subsutural band, which rises abruptly from the suture, sloping but little, and is somewhat concave in the middle and a little swollen close to the suture.

The aperture is short and broad, angulated at the shoulder, strongly excurved at the base of the columella, which is short and straight, with a strongly sinnons inner margin; the posterior simus is broad, shallow and inconspicuons. The canal is very short and broad, not constricted, rounded at the end. Color, white.

Length, 8^{mm}; breadth, 5.5 mm ; length of body-whorl, 6^{mm}; length of aperture, 5^{mm}; its brealth $2 \cdot 20^{\mathrm{mm}}$.

Station 2,041, in 1,608 fathoms, one specimen (No. 34,838); and station 2,084, in 1,290 fathoms, 1883. Station 2,229, in 1,423 fathoms, 1884.

Bela Blakei Verrill, sp. nov.
Plate XLIV, figure 8.
Shell of good size for the genus, stout, fusiform, with turreted spire and shouldered whorls, having a circle of nodnles just below the suture and another at the shonlder. Whorls about five and a
half, of which three belong to the nuclens, which is rather large, regularly coiled, the apical whorl rather small, a little depressed, white and polished ; the second whorl is also polished, but crossed by very fine lines of growth; the last nuclear whorl has about five raised, revolving cinguli in addition to the lines of growth.

The lower whorls are crossed by numerous rather straight, obtuse ribs, separated by intervals of about their own breadth; of these there are about twenty-four on the last whorl. Each of these ribs rises into a rounded, rather prominent tuberele at the shoulder; they are faintly marked and oblique on the concave subsutural band, but form another circle of obtuse tubercles just below the suture; anteriorly they fade out at about the middle of the body-whorl. The suture itself is impressed and undulated. The surface, both of the ribs and intervals, is covered by close but distinct lines of growth. At the shoulder a distinct revolving carina connects the tubereles together; below this there are pretty regular, well-developed revolving cinguli, which are romded and separated by rather wide intervals, and cross both ribs and interspaces, but in crossing the ribs they become more prominent and form oblong nodules on the upper part of the whorl; on the lower part of the whorl and siphon they are a little wider, more spaced, and roughened only by the raised lines of growth. On the penultimate whorl there are three or four revolving cinguli below the carina. The subsutural band is strongly marked, broad and decidedly concave, and is covered with slightly curved, oblique lines of growth and faint ribs, and has a single, small, revolving cingulus in the middle. The aperture is long, ovate-fusiform, angulated at the outer lip, and with an acute posterior angle; anteriorly it is narrowed into the moderately long straight canal; the posterior sinus is nearly obsolete. Colmmella straight, with a simuns inner margin. Operculum greenish yellow, ovate, obtusely rounded posteriorly, subspiral anteriorly, with the nuclens near the inner anterior edge. Epidermis pale yellow, thin, closely adherent. Color of the shell within, bluish white; nucleus white.

Length, 16^{mm}; breadth, 8^{mm}; length of body-whorl in front, 7^{mm}; length of aperture, 5^{mm}; its brealth, $3 \cdot 5^{\mathrm{mm}}$; length of operculum, 4.5^{mm}; its breadth, 3^{mm}.

A single living specimen (No. 44,655), was taken at station 2,226, in 2,021 fathoms, N. lat. $37^{\circ} 00^{\prime}, W$. long. $71^{\circ} 54^{\prime}$.

This fine species has some resemblance to the northern B3. sculuris, but has a finer and more regular seulpture, and is easily distinguished by the distinct cirele of nodules just below the suture, a peculiarity
which is also found in many species of Pleurotomella. The character of the nuclens and the presence of an operculum shows that this is a true Bela.

This shell has been named in honor of Mr. J. II. Blake, who was a member of the U. S. Fish Commission Party in 1874, 1875 and 1884.

Bela tenuicostata (G. O. Sars.
Moll. Arctice Norvegiæ, p. 237, pl. 17, figs. 1, a, b, pl. ix, fig. 6 (dentition), 1878.
This species occurred living at station 2076, in 906 fathoms; station 2084, in 1,290 fathoms, one living specimen (No. 35,1\%9); and at station 2115 , in 843 fathoms, one living example (No. 35,595).

These appear to be in all respects like the European form, which is, apparently, a valid species, belonging to the deep sea fauna. The form referred by me in the first Catalogue Marine Mollusca (these Trans., v, p. 481), to this species, which was then regarded by me as a variety of B. decussata, is coarser in sculpture, and is doubtless a variety of the latter.

The true B. tenuicostata now recorded is remarkable for its delicate texture and fine reticulated sculpture.

Admete nodosa Verrill and Smith, sp. nov.
Plate XLIT, figure 9.
Shell rather small, thick and solid, short, stout, with coarsely ribbed and rudely nodulous, convex whorls. The spire is short and rapidly tapered, with the apex apparently blunt, but eroded in both of onr specimens. Whorls apparently four to five; the last two whorls are strongly convex with a well impressed suture. The last whorl is surrounded by five rows of rather large and coarse, prominent nodules, joined together by low, revolving ridges and sitnated upon abont twelve, broad, low, rounded or wave-like ribs. On the penultimate whorl the ribs are more prominent and continue across the whorl and bear about three rows of nodules. The aperture is short, broad-ovate, more acoute behind than in front; the canal is very short and broad flaring, widely opened and twisted a little to the left, but does not cause any interruption or constriction of the outer lip which is regularly arched, forming nearly a semi-circle and has a thin flaring edge which is strongly thickened a short distance within the aperture, anteriorly the outer lip continues round in a regular curve and joins the columella without a distinct notch ; posteriorly there is a distinct rounded groove within the aperture at the
junction of the lip with the body-whorl; the columella is strongly simous and twisted, its anterior margin forms a distinct ridge or fold and another similar fold is situated at about the middle; the imer lip is excavated in the middle and is thickened by a layer of white enamel, which is continnous from the outer lip around to the anterior margin. There is no operculnm. Color white.

Length, $12^{\text {nm }}$; greatest breadth, 8^{mm}; length of body-whorl in front, 10^{mm}; length of aperture, 7^{mm}; its breadth, 4^{mm}.

A living specimen (No. 44,646), was taken at station 2,234, in 816 fathoms, N. lat. $39^{\circ} 09^{\prime}$, W. long. $72^{\circ} 03^{\prime} 15^{\prime \prime}$. Another specimen, but dead, was taken at station 2,217 , in 924 fathoms.

The last named specimen differs from the type in having the nodules smaller and less prominent on the last whorl, while there are six distinct but not very prominent revolving ridges; but the ribs and nodules are sufficiently prominent on the preceding whorls.

This species is remarkable for its solidity and the coarseness of its ribs and nodnles. It can easily be distinguished from all our other shells by the character of the aperture, and especially by the colu-mella-folds.

Marginella Virginiana Verrill, sp. nov.
Shell very small, rather slender, fusiform, with an elevated spire, composed of three to fonr whorls, regularly tapered, with a subacute tip, formed by a small, rounded, prominent nuclear whorl. Suture distinct. Body-whorl elongated, fusiform, with the basal part much tapered. Aperture small, oblique, narrow behind, wider in front, canal a little expanded at the tip. Onter lip thickened within and without, usually a small denticle stands close to the posterior sinus. Pillar with four thin prominent folds, the posterior one nearly transverse; the anterior very oblique. Surface and somewhat polished.

The color is plain, but varjes from grayish or yellowish-white to eream-color and pale chestnut-brown, rarely slightly flecked or fantly banded with lighter and darker tints.

The largest example from station 2307 , in 43 fathoms, is $5^{m m}$ long; breadth, $2 \cdot 6^{\mathrm{mm}}$; length of aperture, 3^{mm}. Many specinens are more slender than this. A small one from station 2265 , is $2^{m m}$ long; breadth, 1^{mm}.

This species oceurred in consilerable numbers at station 2.2% oft Cape Hatteras, in 15 fathoms (No. 44,834) ; also at station 2307 , in 43 fathoms; and at station 2265, off Chesapeake Bay, in 70 fathoms, one example.

Trophon abyssorum Verrill, sp. nov.
Trophon clavatus Verrill, these Trans., vi., p. 176, 188.4 (non Sars).
Shell rather small, stout-fusiform, with strongly angulated whorls and a long, slender, straight canal. The spire consists of three or four whorls besides the nuclens, which is rather large, consisting of about two prominent, smooth whorls. Below the nuclens the whorls are strongly shouldered a little above the middle, the carination of the shoulder being sharply angulated and nsnally surmonnted by a circle of strong, acute, hollow spines, usually eight to ten in mumber, which sometimes project at right angles, but frequently curve upward more or less strongly. The sutnre is impressed and the upper slope of the whorl rises rather abruptly from the suture and is usually flattened and somewhat concave near the shoulder, but sometimes a little convex; below the shoulder the whorl slopes rapidly to the suture. The last whorl is large and convex below the shoulder, and slopes rapidly to the base of the canal, which is long, narrow, nearly straight, but often a little upturned near the tip. The senlpture consists of more or less distinct lamellæ, corresponding with the lines of growth, and at the shoulder forming the prominent spines. Sometimes the lamellæ are prominent and distinct entirely across the whorls, and to the base of the canal on the body-whorl, in other cases they are nearly obsolete except close to the spines. The aperture is elongated, strongly angulated at the shoulder of the last whorl and constricted anteriorly at the base of the canal.

The color is translucent bluish white in alcohol, with the nucleus sometimes pale flesh-color.

Length of a medinm sized example, 8^{mm}; breadth, including spines, 5^{mm}; not including spines, $3 \cdot 5^{\mathrm{mm}}$; length of aperture, 5^{mm}; its breadth, $1 \cdot 5^{\mathrm{mm}}$; length of canal, $2 \cdot 5 \mathrm{~mm}$.

Variety, limicola Verrill, nov.

In this variety the transverse lamellæ on the whorls are more numerous and much closer together, but in crossing the shoulder they do not form spines of so large size, frequently rising into sharp scales or small spinules, but at other times they assume the character of spines, more nearly approaching the form already described. The number of lamelliform ribs amonnts frequently to eighteen or twenty. In shape the shell is very nearly like that of the typical form with the canal long, narrow and pinched up at the base, but the aperture is more rounded externally, owing to the less angulated shoulder.

The nuelens appears to be a little larger and more prominent than in the other form. Some of the specimens of this variety are larger than the typical ones. One of the largest measures 11^{mm}; breadth without spines, 5^{mm}; length of aperture, 7^{min}; of canal, 4^{mm}.

This variety might readily have been taken for a distinct species if intermediate forms had not occurred. Both varieties have been dredged in many localities, in considerable numbers, and many intermediate forms have been met with. The less spinose forms generally come from the deeper waters, but in some cases both forms occur together.

This species ranges in depth from 843 to 2,033 fathoms. It was taken at ten stations in 1883, and at five stations in 1884. The typir cal form was most abundant at station 2115 , in 843 fathoms, where over forty specimens occurred (No. 35,583), and at station 2076, in 906 fathoms, over twenty specimens (No. 38,041). Variety limicola oceurred most abunbantly at station 2221, in 1,525 fathoms, where nearly one hundred specimens were taken, alive and dead; and at station 2038, in 2,033 fathoms, twenty specimens (No. 34,847); the largest example of this variety occurred at station 2084, in 1,290 fathoms (No. 38,039).

This species resembles T. clavatus G. O. Sars, to which I formerly referred it, but both Dr. II. Friele and Mr. Gwyn Jefficeys, to whom I afterwards sent specimens, considered it a distinct species.

Jumala brychia Verrill and Smith, sp. nov.

$$
\text { Plate XLIV, flgures } 10,10 a .
$$

Shell rather slender, elongated, fusiform, with a tall tapering spire, consisting of more than seven whorls (apex eroded). The bodywhorl is somewhat swollen and much larger than the preceding. The lower whorls are slightly shouldered; the upper ones distinetly so. Below the shoulder the lower whorls are somewhat flattened, but distinctly convex, while the upper whorls are distinctly angulated at the shoulder and scarcely convex below it. On the body-whorl the sculpture consists of well-marked, distinctly raised, revolving cinguli, separated by intervals about twice as wide, one or two of those at the shoulder being a little more prominent than the rest, while above the shonlder they are fewer and less distinct. On the upper whorls the cinguli are more prominent, one at the shoulder forming a distinct carina, above which there are six or eight somewhat smaller ones, while one quite prominently developed is situated
just below the suture. The upper whorls are also crossed by numerous, regular, nearly straight, narrow, longitudinal ribs which, with the revolving lines, produce a cancellated structure and at the shoulder they rise into small, rounded nodnles, and form another row of smaller nodules in crossing the subsutural line. On the lower whorls the ribs disappear or become indistinguishable from the lines of growth which cover the whole surface. The aperture is narrowelliptical; the onter lip is regularly arched, except at the shoulder, where it is slightly angulated; the columella is excurved and has a distinct, oblique spiral fold at about the middle; the canal is very short, broad and open, without any constriction. The shell is translucent bluish white internally. The epidermis is pale, yellowish green, thin, firm and close, a little ronghened by the fine lines of growth. The operculum is well-developed, but smaller than the aperture, elongated and irregularly ovate, nearly straight on the outer margin, convex on the imner, bluntly rounded posteriorly, terminating anteriorly in a narrow point, which is slightly falcate, but not spiral ; color yellowish green.

Length of the shell (consisting of only the five lower whorls), 41^{mm}; the eroded apical whorls may have been 4 or 5^{mm} additional; greatest breadth, 37^{mm}; length of body-whorl in front, 20^{mm}; length of aperture, 22^{mm}; its breadth, 8.5^{mm}; length of operculum, 13^{mm}; breadth, 6^{mm}.

A single living specimen was taken at station 2224 , in 2,574 fathoms, N. lat. $36^{\circ} 16^{\prime} 30^{\prime \prime}$, W. long. $68^{\circ} 21^{\prime} 00^{\prime \prime}$. (No. 44,647.)

This species appears to be related to \mathcal{J}. Ossian-Sarsii Friele. It is at least probably congeneric with the latter, but is a mnch more slender and delicate shell and quite different in its sculpture and form.

Omalaxis nobilis Verrill, sp. nov.
Plate ' XLIV, figure 12.
Shell strong. coiled closely in a flat spire, which is nearly plain on the upper or right hand surface and strongly concave on the left or base. The shell consists of five visible whorls, the apical whorl being small and concealed by the succeeding one. The whorls are strongly angulated, nearly quadrangular, with two strong, prominent, rounded carine at the periphery, one at each angle, the upper one somewhat more prominent than the other. The surface of the periphery, between these carine, is concave and sculptured by several small, spiral ribs, one of which, next the upper carina, is double, while two or
three are near the lower carina, leaving a comparatively smooth, depressed central area around the periphery; small spiral lines also appear on the surface of the large carine. The upper surface of the whorls is nearly flat and distinctly depressed below the level of the outer earina, which is often made double by a groove on its upper side; close to the suture there is also a slightly raised spiral ridge rising abruptly from the suture, which is narrow but distinct. The double peripheral carina appears on the preceding whorls close to the suture. On the lower side the whorl is strongly depressed next the onter carina and then slopes inward with a slightly convex surface, which is covered with fine spiral strize, and has a slightly raised spiral ridge near the inner angle; this ridge and also the outer carina are visible on the whorls within the broad mubilical depression ; the nuclear whorls appear to be smooth so far as they are visible. The whorls are crossed by very distinct, elose, raised lines of growth, which become prominent and form transverse nodules in erossing the principal carine, but are elsewhere fine and close. On some parts the remnants of the epidermis can be seen, which appears to have been raised into fine lamellæ along the lines of growth. The aperture is four-sided and somewhat trapezoidal, with the outer corners squarely angled and the imer ones rounded; the outer side is flattened, while the inner side is pretty well rounded. The operculum is thin, horny, multispiral, somewhat coneave and dark brown in color. The color of the living shell is pale chestunt-brown, irregularly and indistinctly banded with yellowish white.

Greatest diameter, 11^{mm}; height, or breadth of last whorl, 3^{mm}; diameter of aperture, $2 \cdot 5 \mathrm{~mm}$.

One living and one dead specimen occurred at station 2265, off Chesapeake Bay, in 70 fathoms (No. 41,481).

Delphinula nitida Verrill and Smith, sp. nov,

$$
\text { Plate Xliv, figure } 11 .
$$

Shell small, fragile, very delicate, with a slight silvery iridescence.
Our specimen, which has lost the apex, consists of three gradually enlarging whorls entirely diseonnected with each other and nearly round in a cross section. When perfeet the spire, must have been rather elevated, gradually tapering to an acute tip. The surface is sculptured by thin, elevated riblets, erossed by distinctly raised, revolving lines of about the same size, producing a pretty regularly cancellated or retieulated sculpture, in which the meshes are mostly elongated in the direction of the spire, around the periphery, but in
the opposite direction on the lateral and inner surfaces; the transverse riblets are most elevated on the upper sides of the whorls, where they rise into small, thin lamellæ; they also form similar lamellæ on the inner and lower surfaces; the revolving lines are most conspicuous around the periphery; minnte but distinctly raised lines of growth also cross the intervals between the riblets. In a front view of the base the shell appears umbilicated and the upper whorls can be partially seen within the umbilicus. Color silvery white, slightly iridescent.

Length (including only the three last whorls), 5^{mm}; breadth, 4^{mm}; diameter of aperture, $1 \cdot 6^{\mathrm{mm}}$.

Station 2229, in 1,423 fathoms, one lead but fresh specimen. (No. 44,648).

This singular shell bears no resemblance to any other known from this region. The soft parts and operculum being unknown, it is referred to this gemus only provisionally, but its form and the pearly structure of the shell indicate that this is probably its proper place.

Margarita, sp. nov.

A broken specimen of a large and handsome species was taken at station 2265, in 70 fathoms, off Chesapeake Bay. The shell is moderately elevated, with rather convex whorls and a narrowly canaliculate suture. The umbilicus is deep and moderately large, crenulated within by several spiral ribs. On the outer and lower surfaces of the whorls there are several sharply cut, elevated spiral cinguli, with deep furrows between. These are crossed by strong, oblique, raised lines of growth, which produce small nodules on the upper ones, and above the shoulder take the form of oblique riblets, rmaning down from the suture. The upper whorls are broken off.

Puncturella abyssicola. Verrill, sp. nov.
Shell moderately large, elliptical or ovate in outline, a little narrowed anteriorly, evenly convex along the sides, and rounded posteriorly, moderately elevated, with the apex small, not very prominent, acute and curved backward and inward, situated a little behind the middle. The posterior slope is at.first a little concave, owing to the position of the beak; the anterior slope is gently convex. The foramen is elongated fusiform, broadest in the middle, tapering both ways to acute points, but most acute anteriorly; its posterior end does not reach the vertex, and terminates some distance from the
apex; it is thickened and partially filled up within. A slightly elevated ridge rums from the anterior end of the opening to the front. edge of the shell, but is scarcely larger than the other ribs. The sculpture consists of about forty rounded, moderately elevated, nodulous, radiating ribs, with an alternating series of similar but smaller ribs on the lower half. The surface is covered with concentric, raised lines, which are nearly as prominent as the radii, producing a cancellated structure and forming the small, ronnded nodules where they cross. The internal septum is highly developed, large, strong and tubular, extending down in front farther than the foramen, with narrow lateral ridges extending nearly to the front edge of the shell. The edge of the shell is thin and slightly crenulated by the ribs.

Length, 10^{mm}; greatest breadth, 7^{mm}; height, 5^{mm}; anterior edge to apex, 8^{mm}; posterior edge to apex, 4.5^{mm}; length of foramen, $1 \cdot 6^{\mathrm{mm}}$.

One dead specimen was taken at station 2222 , N. lat. $39^{\circ} 03^{\prime} 15^{\prime \prime}$, W. long. $70^{\circ} 50^{\prime} 45^{\prime \prime}$, in 1,537 fathoms, gray ooze, with pebbles, concretions and cinders.

This species differs from P. noachinc in being much less elevated, with the sides not flattened; in having the apex less prominent and farther back; in the distinctly and rather coarsely cancellated structure; and in having a broader and more fusiform foramen, situated more anteriorly and not extending so far toward the apex; the internal septum is larger and more flattened and prolongations extend from its anterior edges nearly to the anterior edge of the shell. It seems to be very distinct from all the species described by Watson, Jeffreys, and Dall.

Cocculina reticulata Verrill, sp. nov.
Shell small, high, with a short-elliptical aperture, slightly flattened at the sides, but well-romded in front and behind. The vertex is near the center, but the apex curves strongly backward, with a minute, smooth, prominent, spiral, incurved nucleus, not distinctly turned to either side. The posterior slope is concave and steep, owing to the incurvature of the apex; the anterior slope is longer and convex, especially toward the summit. The surface is finely and regularly reticulated by radiating and concentric raised lines of nearly equal size, scarcely visible without a lens. The radiating lines may be a little stronger on the sides. Color pale yellowish white.

Length of an ordinary specimen, $2 \cdot 6^{\mathrm{mm}}$; breadth, $1 \cdot 8^{\mathrm{mm}}$; height, 2^{mm}.

Station 2265, off Chesapeake Bay, in 70 fathoms, several living specimens.

This species resmbles in form T'ertura galeolu Jeffireys, but liffers in its senlpture.

Turbonilla perlepida Verrill, sp. nov.
Shell long, slender, very glossy, translucent, and snow-white in color. Whorls twelve, moderately convex, with the suture wellimpressed, narrow, deep, rather oblique. The upper end of the spire is very slender, regularly coiled, with the apical whorl rather large, prominent, reversed, and strongly incurved. The sculpture consists of about twenty transvere ribs on the lower whorls, which are rounded, not very prominent, and extend across the whorls; on the upper whorls these ribs become less numerous and less distinct, but are more or less evident on all the whorls below the nuclens, which is smooth. The aperture is short and broad-ovate, with the outer lip well-rounded laterally and in front; inner edge somewhat angulated at the base of the columella, which is a little excurved. On the body-whorl the transverse ribs do not extend below the periphery, so that the base is smooth. Umbilicus absent or represented by a minute depression.

Length, 7^{mm}; diameter, 1.5^{mm}; length of aperture, $1 \cdot 1^{\mathrm{mm}}$.
Station 2265, off Chesapeake Bay, in 70 fathoms, one living specimen (No. 44,790).

This elegant species is more slender and delicate, and also more lustrous, than any of the allied forms.

Turbonilla grandis Verrill, sp. nov.
Shell very large for the genus, with a long, gradually tapering spire composed of many whorls. Suture a little impressed, shallow, narrow, not very oblique. The whorls are comparatively short, rather flattened, and crossed by slightly raised, rather indefinite, and somewhat irregular ribs, which generally extend entirely across the upper whorls, but fade out above the middle of the body-whorl. The ribs are more regular and more elevated on the upper half of the spire than on the lower half. The surface between the ribs is destitute of spiral sculpture, but is marked by fine and nearly regular lines of growth. The base is smooth and there is no umbilicus. The aperture is short and broad, with an acute angle posteriorly and a decided angle at the base of the columella, which is nearly straight
and has a large, obtuse, rounded spiral fold above the middle. There is also a slight, rounded angle, formed by the junction of the columella with the lip in front.

Length of the seven lower whorls, 18^{mm}; greatest breadth, 6^{mm}; length of body-whorl in front, $7 \cdot 5^{\mathrm{mm}}$; length of aperture, $4 \cdot 5^{\mathrm{mm}}$; its breadth, $2 \cdot 5^{\mathrm{mm}}$. All the upper whorls are broken off.

Station 2228, in 1582 fathoms, one dead specimen (No. 44,791).
This species most resembles T. Rathbuni, but it is larger, with more flattened whorls, and has a distinct fold on the colmmella.

Actæon hebes Verrill, sp. nov.
Plate XLIV, figure 15.
Shell not very small, short, stout and swollen, broad-ovate in form, with a short spire, (the apex is eroded in both our specimens). The body-whorl is large, swollen, and constitutes the greater part of the shell. The suture is deeply impressed or slightly channeled, the whorl just below it rising abruptly with a convex outline. The penultimate whorl is short, convex, and is surrounded by about three or four punctate grooves. The body-whorl is strongly convex, but very slightly flattened in the middle, its upper portion decidedly swollen; it is covered by about twenty well-marked, revolving grooves, which are closely and very distinctly punctate, the punctations arranged very close together or in contact, and nearly uniform in size; the intervals between the grooves are rather broad and even, with a somewhat lustrous, nearly smooth surface, erossed by slightly sinuous lines of growth. The aperture is ear-shaped, rather broad, narrowed and rounded at the posterior angles, broadly rounded in front, with the inner margin sinuons and strongly excavated at the base of the columella, on which there is an oblique, slightly elerated, obtuse fold. Our specimens, both of which are dead, are white.

Length of the largest specimen, consisting only of the last two whorls, 8 mm ; breadth, 6.5^{mm}; length of the last whorl, $7 \cdot 5^{\mathrm{mm}}$; length of aperture, 6.2^{mm}; its breadth, 3^{mm}.

Station 2224, in 2,574 fathoms. (No. 44,656.)

Cylichna eburnea Verrill, sp. nov.

$$
\text { Plate Xliv, figure } 14 .
$$

Shell moderately large for the genus, firm, solid and thick for a shell of this group. The shell is somewhat elongated, broatest in
the middle, tapering toward the posterior end and broadly romded in front, so that the outline is somewhat conical, but truncated posteriorly. At the tip there is a small, but rather deep pit. 'The outer lip is thickened, somewhat constricted below the middle and then slightly expanded and broadly ronnded anteriorly; posteriorly it bends inward and projects slightly beyond the tip of the shell, and forms a distinet, rounded, posterior siuns. The colunella-margin is thickened, without a fold, and moderately excurved. The umbilicus is narrow but deep. The aperture, in front of the middle, is moderately broad and ovate, but farther back it is much narrowed and encroached upon by the body-whorl. The surface is smooth and polished, without any sculpture except a few faint spiral lines close to the posterior end and others which are wavy and even less distinct at the anterior end. Color of the type-specimen, pure white, with a very thin yellowish white epidermis on some parts.

Length, 6^{mm}; greatest breadth, 4^{mm}; length of aperture equal to that of the shell; its greatest breadth, 1.8 mm .

Station 2265, off Cape Hatteras, in 70 fathoms. (No. 44,657.)
This species is readily distinguished from all others of our coast by its thickness and solidity, by its distinct umbilicus, and by the evident pit at the posterior end. In form it somewhat resembles Diaphana conulus, lut it is less narrowed posteriorly, besides being a muich larger and stonter shell.

Pleurobranchus Americanus Verrill, sp. nov.
Plate Xliv, figere 13.
In alcohol the body is oblong, higher than wide, wath the mantle extending over the greater part of the shell. The foot is large, thick, with short, rounded, grooved auricles in front, its lateral surfaces, like those of the mantle, covered with small projecting spicules. Head bluntly rounded, with two broad, leaf-like oral tentacles and two smaller and narrower posterior tentacles, which are flattened and folded; on the left side there is a conspicuous dark blue eye behind the base of the dorsal tentacle, but on the right side the eye is concealed or wanting, in our specimen. The gill oceupies the groove below the mantle on the right side, and is nearly one-third the length of the shell ; just in front of the gill there is a low rounded prominence, with a central orifice. The shell is thin, translucent, pale yellowish white, oblong, with the sides nearly parallel and the anterior end bluntly romuded. The spire is a little prominent, ter-
minal, and strongly curved to the left, with the nucleus smooth, glassy, and incurved, situated at some distance from the margin. The surface of the shell is covered with numerous strong, irregular, concentric undulations, and by much smaller and finer lines of growth, which are crossed by microscopic, interrnpted, radiating lines, giving a very finely reticnlated appearance.

Length of the shell, 13.5^{mm}; breadth, 8.5^{mm}.
Station 2262, off Martha's Vineyard, N. lat. $39^{\circ} 54^{\prime} 45^{\prime \prime}$; W. long. $69^{\circ} 29^{\prime} 45^{\prime \prime}$, in 250 fathoms, green mud and sand; bottom temperature $42^{\circ} \mathrm{F}$. One living specimen. (No. 40,503.)

Glaucus margaritaceus (Bose).

Glaucus Boscii Lesson, Voyage, la Coquille, Zoologie, vol. ii, p. 288, 1830.
Station 2221 , N. lat. $39^{\circ} 05^{\prime} 30^{\prime \prime}$; W. long. $70^{\circ} 44^{\prime} 30^{\prime \prime}$. One immature specimen. Station 2224 , N. lat. $35^{\circ} 16^{\prime} 30^{\prime \prime}$, W. long. $68^{\circ} 21^{\prime}$. One adult and three young.

This species agrees very closely with the description of Bosc, as quoted by Lesson, op. cit., p. 283.

Heteropoda.

Firoloidea Lesueurii (D'Orb.) Eydoux and Souleyet.
Voyage, La Bonite, Zoologie, p. 343, atlas, pl. 16, figs. 5-7.
Station 2038, 25 specimens; 2039, 5 spec., 1883; 2174, 2 spec.; 2194,12 spec.; 2207,6 spec.; 2235, 1 spec., 1884 . The most northern locality was $2194, \mathrm{~N}$. lat. $39^{\circ} 43^{\prime} 45^{\prime \prime}$; W. long. $70^{\circ} 07^{\prime}$.

Oxygyrus Keraudrenii (Lesueur).
Edonx and Souleyet, Voyage, la Bonite, Zoologie, p. 364, atlas, pl. 18, figs, 1-17.
Oxygyrus Keraudrenii H. and A. Adams, Genera Recent Moll., vol. ii, p. 92 ; vol. iii, pl. 69, figs. 6-6b.
Station 2195 , N. lat. $39^{\circ} 44^{\prime}$, W. long. $70^{\circ} 03^{\prime}$, 1884. One living specimen of good size, at the surface.

Pteroloma.

Styliola striata (Rang).
Creseis striata Rang, Ann. dos sci. nat., vol. xiii, p. 315, pl. 17, fig. 3.
Cleotora striula Rang and Souleyet, Hist. Nat. Moll. Pteropodes, p. 55. ph. 6, fig. 3, 1352.

Soulcyet, Voyage, la Bonite, Zoologio, vol. ii, p. 191, atlas, pl. 8, tigs. 1-4.

Station 2,204, N. lat. $39^{\circ} 30^{\prime} 30^{\prime \prime}$, W. long. $71^{\circ} 44^{\prime} 30^{\prime \prime}$. One living specimen (No. 38,513) was taken at the surface.

This species is not uncommon off the eastern coast of Filorida. It has also been recorded from the Mediterranean and Indian Oce:n.

Spirialis rostralis Souleyet, 1840.
Rang, Hist. Nat. Moll. Pteropodes, p. 62, pl. 14, figs. 7-12.
Eydoux and Souleyet, Toyage, la Bonite, Zoologie, p. 216, atlas, pl. 13, figs. 1-10.
Of this speeies, living specimens were taken in the trawl-wings at stations $2,219,2,229,2,235,2,236$. The most northern was station $2,229, \mathrm{~N}$. lat. $37^{\circ} 38^{\prime} 40^{\prime \prime}$, W. long. $73^{\circ} 16^{\prime} 30^{\prime \prime}$.

Spirialis reticulata (D'Orb.) Rang.
Atlanta reticulatu, D’Orb., Voyage, p. 178, pl. 12, figs. 32-35 (teste Souleyet).
Sprialis clathrata? Rang and Souleyet, Hist. Nat. Moll. Pteropodes, p. 64, pl. 14, figs. 24-26.
Eydoux and Souleyet, Yoyage, la Ronite, Zoologie, p. 220, atlas, pl. 13, figs. 17-19.
A single living specimen occurred at station 2,227, N. lat. $36^{\circ} 55^{\prime}$ $23^{\prime \prime}$, W. long. $71^{\circ} 55^{\prime}$.

Pneumodermon Peronii Lam.

Rang, Hist. Nat. Moll. Pteropodes, p. 75, pl. 9, figs. 1-9; pl. 11, figs. 14-19.
Eydoux and Souleyet, Voyage la Bonite, Zoologie, p. 274, atlas, pl. 14, figs. 7-16.
Station 2,210, N. lat. $39^{\circ} 37^{\prime} 45^{\prime \prime \prime}$, W. long. $71^{\circ} 18^{\prime} 45^{\prime \prime}$. 'Three specimens.

SCAPHOPODA.

Dentalium laqueatum Verrill, sp. nov.
Plate XLiV, figure 18.
Shell rather large, thick, and strong, moderately stout, gradually tapered, gently curved, chiefly behind the middle. The sculpture consists of abont eleven strong, prominent, broad, obtnse, longitndinal ribs, separated by deep, concave interspaces, which are wider than the ribs in the middile of the shell and of about the same breadth posteriorly; at about the anterior third the ribs decrease in prominence, fading out, or becoming flattened into mere obtuse angles at the anterior end; along the middle of the shell a smaller rib intervenes between part of the larger ones; four of the ribs on the conver side are closer together and narrower than the rest, while those on the
concave side are widest apart. Between the ribs the whole surface is covered with regular, fine and close, microscopic longitndinal lines, which also cover the ribs where they are not worn. Distinct and rather close lines of growth cover the surface and in some places make, with the longitudinal strix, a fine reticulated structure. Anterior aperture nearly romud, but slightly angulated in line with the principal ribs; edges thin, lut the shell is thickened and the interior is cirenlar farther back. The posterior end is rather small, with a very small aperture, the shell being thickened, but the tip is so eroded as to render uncertain the existence of a slight notch.

Color dull grayish white.
Length, 45^{mm}; diameter of large end, 6^{mm}; of small end, 3^{mm}.
Station 2,268, off Chesapeake Bay, in 68 fathoms, one living specimen (No. 44,671).

This species is easily distinguished from all others of our coast, by the very large and strong longitudinal ribs, and the fine longitndinal strix between them.

Dentalium ensiculus Jeffreys.

Dentalium ensiculus Jeffreys, Ann. Mag. Nat. Hist., Feb. 1877, p. 154; Proc. Zool. Soc. London, 1882, p. 660, pl. 49, fig. 4.

Station 2,174, off Chesapeake Bay, N. lat. $38^{\circ} 15^{\prime}$, IV. long. $72^{\circ} 03^{\prime}$, in 1,594 fathoms, two living specimens (No. 38,635) ; and station 2,221 , N. lat. $39^{\circ} 05^{\prime} 30^{\prime \prime}$, W. long. $70^{\circ} 44^{\prime} 30^{\prime \prime}$, in 1,525 fathoms, two specimens, one living ($\mathrm{No} .38,636$).

This species is easily recognized ly its strongly flattened form, with a sharp edge along the convex side. It is rather strongly curved and has a deep posterior notch on the convex side.

Mr. Jeffreys records it from off the European coast, taken by the Poreupine Expedition in 1869 and ' 70 ; by the Valorons Expedition, in 1,450 and 1,785 fathoms; and from the Challenger Expedition, in 470 fathoms, off' St. 'Thomas, W. I.

Cadulus spectabilis Verrill, sp. nov.
Plate XLIV, figure 19.
Shell very large for the gems, rather strongly eurved, especially behind the middle, swollen and somewhat angular and gibbous a short distance back of the aperture. The gibbosity or swelling affects most the dorsal side, but is distinct, also, on the sides and ven-
trally; in advance of this swollen part the shell narrows rapidly to the aperture, the decrease being much the greatest on the dorsal side. The aperture is oblique and elliptical in outline, the dorsal margin being distinctly flattened. From the anterior swelling the shell tapers regularly and gradually backward, with an increasing curvature. The posterior opening is not very large, a little flattened, and its margin, when perfect, has a moderately deep notch on each side and a shallower one both above and below. The shell is translucent, aud the surface is everywhere smooth and polished, but shows irregular alternating bands of lighter and darker shade, due to greater or less transparency of the substance, and there are also faint longitudinal whitish lines visible in the substance of the shell, but not affecting the surface.

Length, 22^{mm}; greatest diameter, 4^{mm}; breadth of the oral aperture, 2^{mm}; diameter of posterior aperture, 1^{mm}.

Station 2,043, in 1,467 fathoms, 1883, (No. 38,116); stations 2,174, $2,221,2,222,2,228$, in 1,525 to 1,594 fathoms, 1884 . Taken in the largest numbers at station 2,221, where about twenty-five specimens occurred, part of them living, (No. 40,498).

This species is remarkable for its great size, exceeding even C. grandis; for its gibbous swelling close to the anterior end; and for the rapid and strongly marked contraction of the oral aperture. By the last named feature it is readily distinguished from C. grandis. (See plate xlir, fig. 17).

LAMELLIBRANCHIATA.

Periploma undulata Verrill, sp. nov.

Shell thin, translucent, rather small, compresser, long-ovate, with the beaks a little prominent, situated somewhat in advance of the middle. The anterior end is broadest, somewhat produced and obtusely rounded, with a slight undulation ranning from the beak to the anterior ventral margin, which is evenly convex in the middle, but is so drawn in as to form a slight emargination at the commencement of the posterior portion; a rather broad, shallow, bat welldefined groove runs from the beak to the basal emargination; back of this the posterior portion is rapidly narrowed to the rather small, subtruncate tip; a slightly elevated and roughened ridge runs from the beak to the lower angle of the posterior end; and several finer, radiating lines cover the posterior surface above it. The anterior dorsal margin is convex, and slopes very gradually; the posterior
dorsal margin is nearly straight and slopes more rapidly than the anterior. The senlpture consists of slightly raised but very evident concentric undulations, which, like their concave intervals, are covered with very fine lines of growth. The radial sculpture consists of the anterior and posterior undulations already referred to, and of the thin, raised, radiating lines on the posterior area, above described. The hinge consists of a small, somewhat spoon-shaped cartilago-plate, free at the end, projecting inward nearly at right angles to the margin, and supporting a small, somewhat triangular cartilage-pit. From the postcrior margin of this plate a slightly developed, supporting rib, or buttress runs downward and backward for a short distance. A well-defined, narrow, ineised notel extends at right angles from the hinge-margin into the center of the beak, just in front of the cartilage-plate. The hinge-margin itself is very thin. The imer surface of the shell is smooth, but wavy, and the muscular scars are indistinct. The epidermis is very thin, tinged with rusty brown toward the margins, showing lines of growth; it is slightly ronghened and wrinkled along the posterior radii. Color, pale grayish white.

Length, $13^{\text {man }}$; height, 10^{mmn}; thickness, about $5 \cdot 5^{\mathrm{mmm}}$.
Station 2,234, N. lat. $39^{\circ} 09^{\prime}$, W. long. $72^{\circ} 03^{\prime} 15^{\prime \prime}$, in 816 fathoms (No. 44,84n).
This species bears some resemblance to P. papyruceu, but it is a narrower and more elongated shell, with the posterior end more produced, and with concentric and radiating mululations not seen in the latter. The eartilage-plate is smaller, and the supporting rib much less developed and more oblique than in P. papyracea.

Pecchiolia granulifera Verrill, sp. nov.
Shell small, thin, delicate, somewhat three lobed or trimgular-cordate, with the anterior and posterior ends a little produced and obtusely rounded, while the ventral margin is more produced and more broadly rounded; the dorsal margin is gently convex behind the beak, and decidedly concave in front of it. The beak is a little prominent, aente, and turned strongly forward. The umbos are rather prominent, and a romded, ill-defined ridge runs to the postero-ventral margin. The whole surface is ciosely covered with very small, rough gramules, to which minnte grains of sand and foraminifera frequently adhere. On the anterior half there are also thin, feebly marken, raised radiating lines, more or less obscured by the granules ; anteriorly these become more distinct. Internally the shell is smooth and pearly, but covered with minute white specks. The hinge-margin
is thin, but bears, just in front of the beak, a large, strong, crescentshaped tooth, convex within, projecting upward nearly at right angles to the margin, and hollowed out on its upper side, at the huntar depression, so that the entire thickness of the tooth is situated within the outline of the edge ; another very much smaller, triangular tooth is situated under and behind the beak, within and below the margin. The exterior ligament is small and thin.

Length, 8^{mm}; height, the same.
Station 2,229, off Chesapeake Bay, in 1,423 fathoms. One dead specimen (No. $44,838$.)

Tapes, sp.

At station 2,206, in 1,043 fathoms, a single, somewhat eroded left valve of a Tapes was dredged, which agrees very closely in size, form and general appearance with T. virgineus of Europe. It is, perhaps, a little more oblong, or less convex ventaally, and the concentric ridges are finer, closer, and less raised, or more like lines of growth. The hinge-margin is thicker and stronger. The pallial simns is smaller, narrower and more pointed.

Length, 38^{mm}; breadth, 22^{mm} (No. 40,108.)
Choristodon (?) cancellatus Verrill,'sp. nov.
Shell rather small, swollen, triangular-ovate, with the umbos prominent and swollen, and the beaks large, subspiral, and turned forward, so that in a front view the shell has a strongly cordate form. The anterior end is short and broadly rounded; the posterior end is longer and narrower, somewhat tapered, obtusely rounded at the end. 'The posterior dorsal margin slopes rapidly, and is subparallel with the ventral margin. There is a small, depressed, distinet, but not much differentiated lunular area in front; of the beaks. The scuhpture consists of numerous narrow, nearly equal, sharply eut, radiating grooves, separated by wider raised ridges, which are deenssated by thin, sharp, raised, concentric lines; these two sets of lines, in crossing each other, produce a rather fine cancellated structure over the entire surface. The hinge consists of two strong central teeth just below the beak, separated by a triangular pit, and supported on a rather broad plate, extending inward from within the thickened margin; the posterior of the two teeth is largest and thickest, and may have been slightly bilobed when perfect. A thin, incised ligamental groove runs from under the beak backward in a curved line between the thickened immer and outer shell-margins. Muscular and pallial sears are not visible, owing to erosion.

Length, $8^{\text {mm }}$; height, 7^{mm}; thickness, 6^{mm}; beak to posterior end, $7^{\text {nam }}$; to anterior end, $2^{\text {mum }}$.
Station 2,265, off Chesapeake Bay, in 70 fathoms. One dead and somewhat croded left valve (No. 44,839).
The precise generic position of this shell is doubtful, owing to the imperfect preservation of the specimen, which does not show the muscular and pallial scars.

Cryptodon grandis Verrill and Smith, sp. nov.
Plate XLiV, figure 22.
Shell rather large, thick, angular, remarkably high, owing to the great prominence of the ventral margin and the elevation of the beaks, and with the surface strongly undulated by median and posterior folds. The beaks are high, acute and strongly inenrved and turned forward. The lunule is large, cordate, sunken, and defined by a prominent ridge. The posterior dorsal margin has a long, narrow, fusiform liganental area, bordered by a prominent, rounded ridge. Another larger and more prominent ridge extends from the beaks to the angle, leaving a sunken concave area behind it, and terminating in a prominence or lobe at the margin. Another broad and distinctly elevated, rounded ridge runs from the beak to the ventral margin, which projects downward in a prominent, rounded angle; this median ridge is divided into two parts by a slight furrow just behind the middle. Anteriorly there is a ridge, not very well marked, roming from the beaks outside the lunular area and terminating in a rounded projection of the anterior margin. Thus the margin has an anterior and two posterior prominences, besides the great median lobe, while the anterior margin, in the lunular region, is strongly concave and the posterior dorsal margin is convex. The surface is dull grayish white, and closely covered with prominent and often sharply raised lines of growth, which are irregular and wavy or fibrons in appearance. The hinge-margin is thin, with a narrow, elongated ligamental groove, which is strengthened by a narrow buttress within; there are rudiments of teeth.

Length of the largest specimen, $21^{\text {min }}$; height, from beak to ventral margin, 24^{mm}; breadth 15^{mm}.

A large living specimen was taken at station 2,231, in 965 fathoms, N. lat. $38^{\circ} 29^{\prime}$, W. long. $73^{\circ} 00^{\prime}$. Five valves, some of them nearly as large, were taken at station 2,228 , in 1,582 fathoms. A small deal specimen (No. 35,757) was taken in 1883, at station 2,111, off Cape Hatteras, in 938 fathoms.

Cryptodon plicatus Verrill, sp. nov.
Shell not very small, somewhat swollen, and rather thick for the genus; triangular-cordate in form, with very high and acute beaks, which eurve forward but little. The anterior dorsal margin is nearly straight, but a little concave opposite the rather large, depressed lunular area; the posterior dorsal margin is broadly convex and rendered irregular by the strong plications of the margin; the ventral margin is well-rounded, strongly angulated or lobed by the plications, and a little produced in the middle, in a line with the median ridge. The shell is remarkable for the unusual number of plications and undulations of its surface. Posteriorly there are two very large, much raised, sharply angulated plications, with a very deep concave depression between them, and a deep furrow between the hindermost and the edge of the shell; the second and larger fold is separated from a rounded or obtusely angulated median ridge by a broader concave depression. This median ridge is large and very distinct, and somerwhat angular ventrally; farther forward there is a similar, but less marked, ridge, extending to the anterior part of the ventral margin. Anteriorly there is a very large, longcordate, nearly smooth, concave lunule, which is bounded by two small, distinct posterior ridges, which are near together and run to the antero-ventral angle. The surface is covered by irregular and rather strong lines of growth, which become somewhat lamellose in crossing the strong plications. The hinge-margin is considerably thickened behind the beak, with a deep and conspicuous, curved ligamental groove, back of which the edge becomes thin and flaring. The interior is angulated, corresponding to the exterior plications, and is marked by irregular radial strie near the ventral margin.

Length of the largest specimen, 11^{mm}; height, 13^{mm}; thickness, 8^{mm}.

The largest and most typical example is a valve from station 2,193, N. lat. $39^{\circ} 44^{\prime} 30^{\prime \prime}$, W. long. $70^{\circ} 10^{\prime} 30^{\prime \prime}$, in 1,122 fathoms (No. 44,8气5). A young living specimen, apparent identical, was taken at station 2,205, in 1,073 fathoms (No. 44,826).

This species is closely related to C. grandis V., but it has more numerons and more strongly developed plications; its beaks are more elevated and less curved forward, so that the form is more triangular ; the ventral margin is less produced in the line of the median ridge; the shell also appears to be thicker and more swollen.

Kelliella nitida Verrill, sp. nov.
Shell thin, delicate, translucent white, swollen, sul)cordate in a sirle view; in a front view regularly broad-cordate. Umbos swollen; beaks strongly eurved forward; hundar area broad-cordate, running up between the beaks and bounded by a definitely impressed line. The posterior dorsal outline is sloping and slightly convex, forming a slight angle where it joins the broadly rounded ventral margin; in the middle of the ventral margin there is a slightly marked, broally rounded angle, from which a faint but perceptible ridge runs up to the umbos. 'The surface is everywhere covered with fine, elose, very regular raised lines, and usually has an iridescent luster. The hinge in the right valve consists of a long, thin, flexnous lamina, separated by a groove from the margin, rising into two somewhat thickened and more elevated lobes opposite the beaks, and with a small, thin, partially detached, tooth-like process farther forward. The two anterior lobes, viewed in some directions, appear like two small, thin teeth, separated by a notch, and projecting somewhat downward. In the left valve the lamina is more complicated, just behind the beak it splits into two portions, leaving a groove between; the anterior portion forms a long, flexuous lobe opposite the beak, the anterior end expanding slightly and rising above the margin like a small curved tooth; farther forward and separated by a notch, it forms another similar tooth-like lobe. The ligament is light yellow and ocenpies a short, well-marked groove, behind and under the beak.

Length of the largest specimens, 5.5^{mm}; height, 5^{mm}; thickness, $4 \cdot 5^{\mathrm{mm}}$.

Station 2221 , in 1,525 fathoms, about a dozen specimens, alive and dead (No. 40,498). Station 2038, in 2,033 fathoms, one dead specimen (No. 35,217.)

This species is elosely related to K. miliuris of Europe, but is larger, more angular, and more distinetly and regularly sculptured. The European species has been regarded by Teffreys as the young of Isocardia cor, but G. O. Sars and others consider it a distinct form. On the American side no species of Isocardin is known, which renders it probable that the present shell is an adult form.

Nucula trigona Verrill, sp. nov.
Shell of moderate size, mather thick and solid, conspicuonsly triangnlar, with the beaks high, forming an acute angle. The surface is smooth and lustrons, marked only with very faint lines of growth.

The anterior margin is nearly straight, the posterior dorsal margin is slightly convex; the two form an acnte angle, while the ventral margin is broadly rounded, or sometimes subtruncate in the middle, so that the anterior and posterior angles are obtuscly rounded, the posterior end being a little more prominent. The shell is somewhat swollen in the larger specimen. The beaks are small and curve directly inward. The hinge-margin is stont, with a rather large cartilage-pit. The anterior row inchudes about eight elevater, aente tecth, nearly in a straight row; the posterior row is a little curved, and includes about ten similar teeth. The interior is pearly, with strongly marked muscular scars. The margin is plain. The epidermis is firm, smooth, closely adherent, and light greenish yellow in color.

Length of the largest specimens, 1.5^{mm}; height, 5^{mm}; breadth, 3^{mm}. Younger specimens are not quite so high in proportion to their length.

Station 2,194, in 1,140 fathoms, one valve; station 2,228, in 1,582 fathoms, one live specimen; and station 2,229, in 1,423 fathoms, N. lat. $37^{\circ} 38^{\prime} 40^{\prime \prime}$, W. long. $73^{\circ} 16^{\prime} 30^{\prime \prime}$, six live specimens.

This species is remarkable for its triangular form and the aente angle formed by its dorsal margins, as well as for its smooth and hastrous exterior. In all these characters it differs widely from all our other species.

Arca profundicola Verrill and Smith, sp. nov.

Plate XLIV, figures 23, $23 a$.

Shell rather small, elongated, angular and oblique, very inequilateral, with the posterior end elongated and expanded; the anterior end short and oblique, angnlated above; the ventral margin oblique and incurved in front of the middle.

The shell is covered with a rather coarse, dark brown epidermis, rising into elongated and conspicuous scales and lamellæ, which becomo longer and more conspicuous posteriorly, where they form a fringe beyond the margin. Bencath the epidermis the sculpture consists of small, wary, concentric ridges, parallel with the lines of growth, and of rather fine, regular, radiating grooves, separated by rather wider, rounded interspaces, which are often a little nodulous in crossing the concontric ridges. The beaks are prominent, angnlar, curved inward and a little forward, and somewhat flattened in the middle. A flattened or somewhat indented area extends from the beaks to the margin. The dorsal margin is straight and is about

Trans. Conn. Acad, Vol. Ti.
55
May, 1885.
two-thirds the length of the shell; the ligamental area is narrow-lanceolate, becoming long and narrow posteriorly; its surface has only faint lines of growth, but its margins are clearly defined. The posterior margin descends obliquely, or with a slight incurvature, and then expands in a rounded curve. The ventral margin is gently convex, except where slightly indented by the byssal sinus. The anterior end is very short and narrow, ending superiorly in a small, obtuse angle. The inner margin is simple and plain, without any crenulations. The hinge-margin is thin and the teeth are small and rather inconspienons; the posterior ones are eight or nine in number, in the form of very oblique, slightly raised ridges or follds, the two or three most posterior becoming less oblique and more conspicuous; the short anterior portion bears about six small but prominent tecth, which stand nearly transverse to the margin.

Length, 12^{mm}; height, 7^{mm}; thickness, 5^{mm}.
Station 2,226, in 2,021 fathoms, N. lat. 37°, W. long. $71^{\circ} 54^{\prime}$; seven living specimens (No. 44,501).

This species is much more elongated and more expanded posteriorly than any form of A. pectunculoides, and the beaks are more prominent and nearer the anterior end. It is a much larger species.

Limopsis aurita? Jeffreys.

? Arca auritu Brocchi, Conch. foss. Subap., ii, p. 485, pl. 11, fig. 9, (t. Jeffreys.)
Limopsis aurita Jeffreys, British Conch., ii, p. 161, pl. 4, fig. 3; rol. v, pl. 30, fig. 1.
Shell large for the genus, compressed, very oblique, somewhat rhomboidal, with romded corners, and the posterior rentral margin much produced and broadly rounded. The umbos are not prominent; the beaks are small, acute and curve directly inward. The dorsal margin is nearly straight, with rounded ends, and is much shorter than either of the other sides, its length being less than onefourth the circumference of the shell. The ligament-area is very narrow and long, extending nearly the whole length of the dorsal margin. The cartilage is rather small and triangular. The hingeplate is not very broad, considerably curved within, very narrow, and destitute of teeth at the center, opposite the cartilage-pit. It expands regularly and about equally on each side, and bears about six moderately stout, somewhat oblique, rounded teeth on the posterior side, and six or seven thimer, closer, and more transverse teeth on the anterior side, the two onter ones becoming more distant and much more oblique than the rest. The posterior margin is nearly straight for the greater part of its length, and the anterior margin is
nearly parallel with it, though longer and more broadly rounded, passing insensibly into the curvature of the ventral margin; the contire margin is flat, beveled, and perfectly plain, with a simple but distinctly angulated imeer rim. Externally the shell, when fresh, is covered with a thick, lamellose, and fringed, light yellowish brown epidermis; over the central portion the epidermal processes are long, thin, and hair-like, and arranged in radiating lines; toward the margin, especially ventrally and posteriorly, they become long, flat, thin and deeply lacerate or fringed at the end; on the umbos the processes become small and ciliated with a distinct radial arrangement.

Beneath the epidermis the shell is everywhere covered with pretty regular concentric undulations, formed by thin, rather sharp, raised lines, separated by regular concave intervals; anteriorly the ridges become less evident and very close; small, but distinct, radiating strie cross the ridges over the central parts of the shell and are deeper or incised in crossing the summits of the ridges; anteriorly the radiating strixe entirely disappear; toward the posterior end they become stronger and on the posterior area they are gradually replaced by elevated radii which in crossing the concentric lines produce a distinctly granulated appearance.

The inner surface is nearly smooth aud somewhat lusprous, but sometimes minutely radially striated. The muscular soars are small, but distinct.

Length of the largest specimens, including epidermis, $22^{m m}$; without the epidermis, 19^{mm}; height from beak to ventral margin, 17^{mm}; length of dorsal margin, 9^{mm}; transverse breadth, 1.0^{mm}.

Station 2228, in 1,582 fathoms, two living specimens (No. 44,822); and station 2221, in 1,525 fathoms. One dead specimen ($\mathrm{No} 0.40,498$.)

This shell is larger, more oblique, and has a thimer hinge-plate than the form described and figured by Jeffireys. Whether it be identical with the original fossil shell, described by Brocchi, may be questionable.

Limopsis plana Verrill, sp. nov.
Shell rather large for the genus, broad, moderately compressed, decidedly oblique, with a thin, straight hinge-margin and a wide, elongated fusiform ligamental area, interrupted in the middle by a large, triangular cartilage-pit. The straight dorsal margin is less than one-fifth the circumference of the shell, and does not extend so far forward as the convexly rounded anterior margin; the ventral margin is regularly rounded and considerably prodnced backward;
the posterior margin is decidedly oblique and nearly straight, forming a distinct angle where it joius the dorsal margin. The umbos are a little prominent; the beaks are directly incurved, small, and situated at about the middle of the dorsal margin. The exterior of the shell is rather smooth beneath the epidermis, but covered with numerous small, somewhat irregular undulations or rilges, and by smaller lines of growth ; the radiating lines are very faint or almost entirely obsolete over the greater part of the shell, but in fresh specimens are indicated by the rows of slender epidermal hairs. The epidermis is light brown, thin, easily removed, and bears numerous radiating rows of fine slender hairs, which become longer and more erowded near the margin. The thin hinge-plate is nearly straight on the inside, and bears about three or four teeth on each side of the ligament-pit; three of those on the posterior side being larger and more distinct than the rest, while on the anterior side the three larger ones are but little prominent and decidedly oblique. The imer surface is smooth, and the margin is thin and plain, slightly beveled close to the edge.

Length, 14^{mm}; height, 14^{mm}; thickness, 8^{mm}; length of hinge-margin, $8 \cdot 5^{\mathrm{mm}}$; breadth of ligament area, on one valve, 2^{mm}.

Station 2098, in 2,221 fathoms, two living specimens. (No. 35,238.)

This species resembles, in size and form, the shell which we here refer to L. aurita, with which it also agrees in having a plain margin, but it differs decidedly in having a much broader ligament area, and a much larger cartilage-pit. Its hinge-margin is very much thinuer, and the teeth fewer, less prominent, and more oblique. Externally the surface is muth smoother, the concentric lines smaller, and less elevated, while the radial lines are much less distinct. The epidermis is thimer and less densely covered with hairs and sealelike processes.

Limopsis affinis Verrill, sp. nov.
Shell of moderate size, rather swollen, very oblique, with a broad and rather short ligamental area, and a short, curved hinge-margin, with few teeth.

The shell is subovate and very oblique; the dorsal margin is rather short and nearly straight, joining the anterior and posterior margins with ohtusely rounded angles; the anterior margin is rounded aml projects beyond the anterior angle, and then strongly receles in a broad regular curve, the posterior ventral margin is obtusely rounded
and strongly prodnced backward; the posterior margin is very broadly rounded, its direction nearly parallel to the opposite part of the anterior margin. The edge of the shell is crenulated with a row of small rounded tubercles situated just within the margin, the largest along the ventral edge, disappearing toward the anterior end. Small radial grooves run inward from between these tubereles for a short distance. The ligament-area is musually wide, somewhat concave, with a large cartilage-pit in the middle, which is elongated in a direction transverse to the ligament, with the sides parallel and the apex triangular. The hinge-plate is thin in the middle, becoming rather broad at each end, so that the inner margin is curved or angnlated in the middle. The anterior end bears about fom prominent ronnded tecth, the outermost the largest. The posterior end has four or five prominent teeth, increasing in size ontwardly; the last two are decidedly larger than the rest and somewhat oblique. The umbos are rather prominent and the beak curves directly inward towards the cartilage-pit, and is situated some distance from the margin, owing to the breadth of the ligamental area. The surface is covered with small, rather regular concentric undulations or ridges, which are crossed by radiating lines that are not very distinct over the greater part of the shell, and become nearly or quite obsolete on the umbos. The epidermis is light yellowish brown, and rises into series of slender hair-like processes along the radiating lines; these epidermal hairs become longer and crowded toward the margin, where they are more or less united and form a marginal fringe.

Length, 10.5^{mm}; height, 11^{mm}; thickness, 8^{mm}; length of dorsal margin, 5^{mm}; breadth of ligament-area, 2^{mm}.

Station 2092, in 197 fathoms; two liviug specimens (No. 44,829.)
This species resembles L. mimuta in size and general appearance, but it is more oblique and more produced veutrally, and is widely different from that and all our other species, except L. planc, in having a broad ligamental area and large cartilage-pit. It is also peculiar in the character of its hinge-margin, and in its teeth, which are few in number, promineut, ronnded, and scarcely oblique, except the outer ones on the posterior side. Externally the snrface is smoother than in most species, the radial lines being but little evident when the epidermis is off. Althongh resembling L. plana in its broad ligament-area, it differs in having the ventral margin strongly crenulated, instead of plain, and in form it is a narrower, more oblique, and more swollen shell.

Crenella fragilis Verrill, sp. nov.
Shell large for the genas, very thin and fragile, translncent, iridescent within, in form oblong-ovate, very oblique, the anterior end short, a little expanded and broadly romuded, while the shell is very much swollen and prolonged ventrally. The posterior side falls oft' rapidly from the beak and is only a little convex, so that the margin of the valve has a nearly elliptical ontline, with the longer axis extending from the beak to the ventral margin. The umbos are prominent and the beaks are strongly incurved and turned forward, and separated from the margin of the shell by a deep, narrow ligamental groove. The hinge-margin is thin and nearly plain, without any denticles. The ligament is long and extends from the front of the beak back more than a third of the length of the posterior margin. The sculpture consists of very regular, fine, radiating, raised lines, scarcely visible withont a lens, separated by furrows a little wider; these are more or less interrupted by ummerous fine but irregular raised lines of growth. The epidermis is very thin, smooth, pale olive.

Ieight of the smaller example, from beak to ventral margin, $14^{\text {mm }}$; length from anterior to posterior margins, 9^{mm}; thickness, 12^{mm}. A broken specimen from the same locality is more than twice as large as the one measured.

Station 2,265, off Chesapeake Bay, N. lat. $37^{\circ} 07^{\prime} 40^{\prime \prime}$, W. Iong. $74^{\circ} 35^{\prime} 40^{\prime \prime}$, in 70 fathoms, green mud, gravel, and broken shells; bottom temperature $63^{\circ} \mathrm{F}$. 'Two dead but fresh specimens (Nos. 40,676 and 41,543).

This species is remarkable for its large size, compared with other species; the extreme thinness and translucency of the shell; and for the fine and regular radiating lines that cover the entire surface.

Pecten undatus Verrill and Smith, sp. nov.

Plate XLIV, figure 21.

Shell smal!, oblique, very thin, fragile and translncent. The valves are similar in form and seulpture, but the left is a little more convex. Both are regularly undulated and everywhere covered by mumerous, rather fine and regular raised radiating lines. In the right valve the anterior ear is considerably prolonged; with a deep acnte noteh below it; in the other valve the ear is less elongated and the moteh is shallow and brondly concave; the posterior ear in both valves is
short-triangular, subaente, with a shallow concave notch. The liga-ment-pit is small and triangular. The hinge-margin is thin and simple. Beaks small, rising slightly above the margin in the left valve, and not quite reaching the margin in the right valve. The anterior margin of the shell projects considerably forward in a broad curve; the ventral margin is broadly and regularly arched, but projects downward a little more strongly behind the middle; the posterior margin is much less convex than the anterior, and in its upper part somewhat straightened. 'The concentric undulations of the surface are broad and regular, the depressions about equal to the undulations; they become much broader in proportion as they recede from the umbos, the last four occupying about one-lalf the breadth of the shell. The radiating lines are very thin, but distinctly elevated and roughened, or rendered slightly irregular by the very fine microscopic lines of growth, which everywhere cover the shell. The radiating lines are readily visible withont a lens. Color translucent bluish white.

Length, 19^{mm}; height, 20^{mm}; breadth, 5^{mm}.
The single living specimen was taken at station 2229, in 1,423 fathoms, N. lat. $37^{\circ} 38^{\prime} 40^{\prime \prime}$, W. long. $73^{\circ} 16^{\prime} 30^{\prime \prime}$, (No. 44,827) ; a fragment occurred at station 2221, in 1,525 fathoms (No. 44,828.)

BRACHIOPODA.

Atretia gnomon Jeffreys.

> Ann. Mag. Nat. Hist., Sept., 1876, p. 251 ; Proc. Zool. Soc. London, for 1878, p. $412, \mathrm{pl} .23$, fig. 4.
> Verrill, Trans., Conn. Acad., vol. vi, p. 234, 1884.

This species was included in my preceding catalogne as one of those which had been taken off the eoast of Labrador (Valorous Exp.), but not from off the coast of the Uniterl States. In 1884, however, it was taken in large numbers at station 2221 , N. lat. 39° $05^{\prime} 30^{\prime \prime}$, W. long. $70^{\circ} 44^{\prime} 30^{\prime \prime}$, in 1,525 fathoms (two hundred and twenty-five specimens, mostly living.) A few specimens also occurred at the adjacent station, 2222 , in 1,537 fathoms; and a single living specimen was taken at station 2174 , N. lat. $38^{\circ} 15^{\prime}$, W. long. $72^{\circ} 03^{\prime}$, in 1,594 fathoms.

These specimens agree perfectly with north Enropean specimens sent by Dr. Friele.

Discina Atlantica King.
Verrill, Trans. Conn. Acad., vol. vi, p. 233, 1884.

```
Plate NLIV, figure }24
```

Living specimens of this species were taken in considerable numbers at station 2226, in 2,021 fathoms; and 2229, in 1,423 fathoms. Λ few living specimens also occurred at station 2208 , in 1,178 fathoms; and 2228 , in 1,582 fathoms.

In most eases it was found adhering to hard concretions of clay, consolidated by oxide of iron, etc.

List of deep water species added to the fauma during the summer of 1884.
The following list is supplementary to the list of 1883 (see 1. 264) and is written in the same form. An asterisk (*) indicates living specimen; a dagger (\dagger) dead specimens.

CEPHALOPODA.

Ancistrocheirus megaptera V. sp. nov. vi, 399, pl. 42, f. 1, 1 a. Bathymetrical range, 707 fathoms.
Teleoteuthis (Onychiu) agilis V. sp. nov. vi, 400, pl. 42. f. 2. 2a. Surface.
Benthoteuthis megalops V. gen. and sp. nov. vi, 402. pl. 44, f. 1. B. range, 600 to 1073 f .

Cirrhotcuthis plena V. sp. nov. vi, 404, pl. 42, f. 3. B. range, $10 \approx 3 \mathrm{f}$.

Cirrhoteuthis megaptera V. sp. nov. vi, 405, pl. 43, f. 1, 2. B. range, 1054 to $25 \pi 4 \mathrm{f}$.

Opisthoteuthis Ayetssizii V. vi, 408.
B. range, 1230 f . Cb .

GASTROPODA.

Toxoglossa.
Pleurotomella Jeffreysii V. sp. nov. vi, 411, pl. 44, f. 3. B. range, 1168 ff † ; 1525 to 1537 f .*

Plewromella tinctu V. sp. nov. vi, 412, pl. 44. f. 4. B. range, $2512 \mathrm{f} . *$; $2574 \mathrm{f} . \dagger$

Pleurotomelln Frielei V. sp. nov. vi, 413, pl. 44, f. 5.
B. range, 1168 f.t : 1178 f.*

Pleurotomella vitrea V. sp. nov. vi, 414, pl. 44, f. 6. B. range, 428 f .

Pleurotomella Lottce V. sp. nov. vi, 415, pl. 44, t. 7. B. range, 1525 f .

Gymmobela brevis V. sp. nov. vi, 417, pl. 44, t. 8.
B. range, 1290 to $1608 \mathrm{f} . *$; $1423 \mathrm{f}$. .

Bela Blakei V. sp. nov. vi, 417.
B. range, 2021 f .

Bela temuicostata G. O. Sars. vi, 419.
B. range, 843 to 1290 f .

Admetc nodose V. and S. sp. nov. vi, 419, pl. 44, f. 9 .
B. range, 816 f.* ; 924 f. \dagger

Rachiglossa.
Marginclla Smitheii V. = M. Virgimiana V., won Con. vi, 420, 45s.
B. range, 15 to $70 \mathrm{f}$. . ; 16 f .* S.

Trophon abyssorum V. sp. nov. vi, 176, 421.
B. range, 843 to 1731 f .* ; 1467 to $15 \pi 5 \mathrm{f} .+$

Trophon abyssorum, var. limicola V. nov. vi, 421.
B. range, 1178 to $1423 \mathrm{f} . \uparrow$; 1290 to 203:3 f.*

Jumata brychice V. and S. sp. nov. vi, 422, pl. 44, f. 10, 10 e. B. range, 2504 f .

Omaluxis nobilis V. sp. nov. vi, 423, pl. 44, f. 12.
B. range, 70 f .

Rhiphidoglossa.

Delplituula miticla V. and S. sp. nov. vi, 424, pl. 44, f. 11.
B. range, $1423 \mathrm{f} . \dagger$

Margarite, sp. nov. vi, 425.
B. range, 70 f. \dagger

Lepeta c九eca (Müll) Gray.
B. range, 250 f. N., Arc., Eu.

Pancturella abyssicola V. sp. nov. vi, 425. B. range, $1537 \mathrm{f} . \dagger$

Cocculina recticulata V. sp. nov. vi, 426. B. range, 70 f .

Gyunoglossa.

Turbonilla perlepida V. sp. nov. vi, 427.
B. range, $\tau 0 \mathrm{f}$.

Turbonilla grandis V. sp. nov. vi, 42%.
B. range, $1582 \mathrm{f} . \dagger$

Tectibranchiata.
Actcon hebes V. sp. nov. vi, 428, pl. 44. f. 15.
B. range, 2574 f. \dagger

Cylicha cburnea V. sp. nov. vi, 428, pl. 44, f. 14.
B. range, $70 \mathrm{f} . \uparrow$

Pleurobranchus Americanus V. sp. nov. vi, 429, pl. 44, f. 13.
B. range, 250 f .

Trans. Conn. Acad., Tol. VI. 56 June, 1885.

Nudibranciliata.
Glaucus murguritucens (Bosc.) vi, 430.
Surface.
Heteropoda.
Firoloidea Lesnewrii (D`Orb.) Eyd. and Soul. vi, 430. Surface.
Oxygyrus Keratulrenii (Les.) vi, 430.
Surface.

Pteropoda.

Styliolu striutu (Rang.) vi, 430.
Surface.
Spirialis rostrulis Sonl. vi, 431.
Surface.
Spiriulis reticulutu (D’Orb.) Rang. vi, 431.
Surface : $2109 \mathrm{f} . \dagger$
Pneumodermon Perouii Lam. vi, 431.
Surface.

SOLENOCONCHA.

Dentalium laqueatum V. sp. nov. vi, 431, pl. 44, f. 18.
B. range, 68 f. \dagger

Dentulium ensiculus Jeff. vi, 432.
B. range, 1525 to 1594 f . Eu.

Culutus spectabilis V. sp. nov. vi, 432, pl. 44. f. 19.
B. range, 1467 to 1582 f. \dagger; 1525 to 1594 f.*

LAMELLIBRANCHIATA.

Periploma unduleta V. sp. nov. vi, 433.
B. range, $816 \mathrm{f} . \dagger$

Pecchiolia granulifera V. sp. nov. vi, 434.
B. range, $1423 \mathrm{f}$. .

Tapes sp. vi, 435.
B. ranges, $1043 \mathrm{f} . \dagger$

Choristodon? cancellatus V. sp. nov. vi, 435.
B. range, $70 \mathrm{f} . \dagger$

Cryptodon greudis V. and S. sp. nov. vi, 436, pl. 44, f. 22.
B. range, 938 to $1582 \mathrm{f} . \uparrow$; 965 f .*

Cryptoton plicetus V. sp. nov. vi, 437.
B. range, 1073 to 1122 f. \dagger

Kelliclle nitidu V. sp. nov. vi, 438.
B. range, 1525 to 2033 f .

Nucule trigona V. sp. now. vi, 438.
B. range, $1140 \mathrm{ff}+$; 1423 to 158 f .*

Limopsis pland V. sp. nov. vi, 441.
B. range, 2221 f .

Limopsis aurita ? (Brocchi.) Jeff. vi, 440.
B. range, 1525 to 1582 f . Eu.

Limopsis affinis V. sp. nov. vi, 442.
B. range, 142 f .

Arca profundicola V. and S. sp. nov. vi, 439, pl. 44, f. 17, 18.
B. range, 2021 f .

Crenella fragilis V. sp. nov. vi, 444.
B. range, 70 f .

Pecten undatus V. and S. sp. nov. vi, 444, pl. 44, f. 21.
B. range, 1423 to 1525 f .

BRACHIOPODA.

Atretia gnomon Jeff. vi. 44.).
B. Range. 1525 to 1594 f. N., Eu.

List of species foumd between 1000 and 2000 fathoms, rulditional to those recorded in the list of 1883. (See 1. 282.)
Those species printed in italics have not been taken by us in less than 1000 fathoms.

CEPHALOPODA.

Fathoms. 1 Fathoms.

Benthoteuthis megalops V. 600-1073 Cimhoteuthis megnptera V. 1054-2574 Cirrhoteuthis plena V. 1073 Opisthotenthis Agassizii V. 1230

GASTROPODA.

TOXOGLOSSA.		T. abyssormm, var. timicola	Fathoms.
	Fathoms. 1168-1537	V.	1178-2033
Pleurotomella Frielei V.	1168-1178	Anachis Halixeti (Jeff.) V.	48-1537
Pleurotomella Lottre V.	1595	Tentoglossa.	
Gymmobela brevis V .	1290-1608	Lamellaria pellucida V.	43-2574
Bela tenuicostata G. O		Cerithiella Whitearesii V.	238-1594
Sars.	843-1290	Rhiphidoglossa.	
Rachiglossa.		Delphimula nitiola V. and S.	1423
Sipho calatus V.	75-15	Puneturella abyssicola V.	1537
Sipho hispidus V.	1525-2033	Gymnoglossa.	
Trophon abyssorum V.	843-1731	Turbomilla grandis V.	1582

SCAPHOPODA.

List of species foumd at depths exceedling 2000 , Jathoms, alditional to those recorded in the list of 1883. (See p. 284.)

CEPHALOPODA.

Mastigoteuthis Agassizii V.	Fathoms. 640-2516	Cirrhoteuthis megaptera V.	Fathoms. 1054-2574
GASTROPODA.			
Toxoglossa.		Theniglossia.	
Plewrotomella tirsta V.	Fathoms. $2512-2574$	Lamellaria pellucida V .	Fathoms. 43-25\%4
Bela Blakei V.	2021	Tectibranchiata.	
Rachiglossa.		Actern hebes V.	2574
Nassa nigrolabra V.	155-2574		
Trophon abyssormm, var. limicola V.	1178-2033		
Jumele brychie V. and S.	2.574		

LAMELLIBRANCIIIATA.

Abra longicallis (Scacchi.) Kelliella mitida V.	Fathoms.$924-2574$	Fathoms.	
		Area profumelicole V. and S.	
	1525-2033	Limopsis plann V.	2221
	BRACH	OPODA.	
Discina Λ tlantica King.	Fathoms. 1178-2021		

* Living specimens have not been taken below 300 fathoms. The sperimen from 1600 fathoms is framentary and its oecomenen is probably aceidental. The next deepest locality is 3 at fiathoms.

EXPLANATION OF PLATES.

Plate XLII.

Figure 1.-Ancistocheirus megaptera (p. 399.) Dorsal view. Natural size. Part of the arms are mutilated.
Figure $1 a$.-The same. Front view of a part of one of the lateral arms; $\times 4$.
Figure 2.-Teleoteuthis agilis (p. 400.) Dorsal view of the type specimen; $\times 2$.
Figure 2a.-The same. Club of one of the tentacular arms; $\times 4$.
Figure 3.- Cirrhoteuthis plena (p. 404.) Yentral view. One-half natural size.
Figure 4.-Octopus Carolinensis (p. 235.) Dorsal view of the type specimen. Natural size.
Figire 5.-Octopus piscatorum (p. 248.) Male. The hectocotylized arm; $\times 2$. From station 2035.
Figure 3 was drawn by Mr. J. H. Blake; the others by Mr. J. H. Emerton. All the figures are from alcoholic specimens.

Plate XLIII.
Figure 1.-Cirrhoteuth is megaptera (p. 405.) Dorsal view. One-half natural size. Figure 2. - The same. Ventral view. One-half nataral size.

Both figures are copied from sketches made on shiphoard hy Mr. A. Baldwin from the living specimens, when first taken.

Plate NLIV.
Figure 1.-Benthoteuthis megalons (p. 402.) Dorsal view of one of the type specimens. Natural size.
Figure 2.-Abralia megalops (p. 143.) Ventral view of the largest specimen. Natural size. This example has raised vernea on the ventral side.
Figure 2a.-The same. Right tentacular arm. Front view; $\times 4$.
Figure 3.-Pleurotomella Jeffreysii (p. 411.) Male. From station 2222. Front view. Natural size.
Figure 4.-Pleurolomella tincta (p. 412.) Station 2225. Front view. Natural size.
Figure 5.-Pleurotomella Frielei (p. 413.) Front view of the type specmen. Natural size.
Figure 6.-Pleurotomella vitrea (p. 414.) Front view; $\times 4$.
Figure 7.-Pteurotomella Lotte (p. 415.) Front view of the type specimen; $\times 2$.
Figure 8.-Gymnobela brevis (p. 417.) Front view of the type specimen; $\times 4$.
Figure 9.-Admete nodosa (p. 419.) Front view of the type specimen; $\times 2$.
Figure 10.-Jumala brychia (p. 422.) Frout view of type specimen. Natural size.
Figure 10a.-The same. Operculum; $\times 2$.

Figure 11.-Delphinula nilida (p.424.) Front view of the type specimen; $\times 4$.
Figure 12.-Omalaxis nobilis (p. 423.) Front view of the best speeimen; $\times 2$.
Figure 13.-Pleurobranchus Americanus (p. 429.) Side view of the type-specimen as preserved in alcohol; $\times 2$.
Figure 14.-Cylichna eburnea (p. 423.) Front view of the type-specimen; $\times 3$.
Figure 15.-Actcen hebes (p. 428.) Front view of the type-specimen ; $\times 2$.
Figure 16.-Dentalium solidum (p. 215.) Side view of a medium sized specimen to show the outline, most of the longitudinal lines are omitted. Natural size.
Figure 17. -The same. Side view of a young specimen. Natural size.
Figure 18.-Dentalium laqueatum (p. 431.) Transverse section across the middle to show the size and arrangement of the ribs; $\times 2 \frac{1}{2}$.
Figure 19.-Cadulus spectabilis (p. 423.) Side view of one of the type-specimens; $\times 2$
Figure 20.-Cadulus grandis (p. 219.) Side view of one of the type-specimens; $\times 2$.
Figure 21.-Pecten undutus (p. 444.) Type-specimen. Natural size.
Figure 22.-Cryptodon grandis (p. 436.) One of the type-specimens. Natıral size.
Figure 23.-Arca profundicolr (p.439.) Type-specimen; $\times 2$.
Figure 23a.-The same. View of the interior of a valve: $\times 2$.
Figure 24.-Discina Atlanlica (pp. 233, 446.) View of one of the most perfect examples; $\times 4$.
Figures 1, 2, $2 a$ and 24 were drawn by Mr. J. H. Blake; figures 12, 14 and 18 by the author; the rest of the figures by Mr. J. H. Emerton.

Additions and Corrections.

Page 408 , line 20, for 1058 , read 1230.
Page 409, line 31, for 1883 , read 1884.
Bela Blakei, p. 417, line 4 from bottom. The figure referred to (pl. 44, fig. 8), really represents Gymnobela brevis V., same page.

Marginella Smithii V. This name is proposed as a substitute for M. Virginiana (p. 420), preoceupied by Conrad for a fossil. It is dedicated to Mr. Sanderson Smith.

Skenea (?) lirata V. = Omalaxis (?) lirata $\mathrm{T}^{\text {'., vol. v, p. } 529 \text {. This species is common }}$ in 10 to 43 fathoms off Cape Hatteras, but has not been preserved with the animal, so that the gemus is still uneertain.

Lepeta caca (Müll.) Gray. This species was taken alive at station 2262, in 250 fathoms.
XI.-Admtioxs to the Shallow-watel Mollusea of Cabe hatteras, N. C., drenged by the U. S. Fisi Commission Steaner "Albatross," in 1883 and 1884. By Kiatharine J. Bush.

[Published ly permission of the U. S. Fish Commission.]

Tire following list is intended to include only species not previonsly recorded from the region off Cape Hatteras, between lowwater mark and 50 fathoms; althongh in one or two instances recorded species are mentioned, where there is some variation from the original description, or doubt as to their identity. It is by no meams complete, as there are still a number of species which have not been satisfactorily identified. There is also a large amonnt of fine shell-sand, which has not yet been assorted.

The lists used for comparison are "Mollusea of Beaufort, N. C.," by Dr. Wm. Stimpson, published in the American Journal of Science, vol. xxix, p. 44, 1860; "Natural History of Fort Macon, N. C., and Vicinity (No. 2), by Dr. Elliott Cones, published in Proc. Acad. Nat. Sci. Philadelphia, p. 120, July, 1871; "American Marine Conchology," by Geo. W. Tryon, Jr., 1873 ; and "Natural IIistory of Fort Macon, N. C., and Viciuity " (No. 5), by Drs. Elliott Cones and I. C. Yarrow, published in Proc. Acad. Nat. Sci. Phila., p. 1, August, 1878.

At the end, a list is given of deeper-water species, fonnd in not less than 40 fathoms, many of which have not before been found so far sonth. Such northern species have an n lefore them.

To Prof. A. E. Verrill my thanks are especially due for valuable advice in the preparation of this paper and for kindness in furnishing books of reference.

GASTROPODA.

Toxoglossa.

Conus Delessertii (?) Rechuz.

> Conus Delessertii Recluz, Magasin de Zoologie, pl. 72, 1843. Kiener, Conus, p. 156, pl. 23, fig. 2. Chenu, Manuel de Conchyliologie, vol. i, p. 345, fig. 1476, 1859. Bush, Report U. S. Com. Fish and Fisheries, p. 77, for 1883, 1885. ? Conus Floridanus Gabb, Amer. Journ. Conch., vol iv, p. 195, pl. 15, fig. 4, 1868.

A single living specimen (No. 35,676) taken at station 2108, in 48 fathoms, althongh agreeing elosely with the description and figure of
the above species, as given by Kiener, is referred to it with considerable doubt, as it is recorded by him as having been foum only in the sonthern part of the Red Sea.

This species agrees also, in most respects, with C. Florictunus Gabb, from 'Tampa Bay, Fla, but differs in having the outline of the

List of shallow-1oater stations in the vieinity of Cape ILatterres, N. C., ocenpied by the Albutross in 1883 uned 1884.

Station.	Locallty.		Fath.	Bottom.	Temp. F.		Hour.	Date.	
			Bot-		Sur-				
	N. Nat.	W. Long.							1883.
2007	$35^{\circ} 17^{\prime} 00^{\prime \prime}$	$75^{\circ} 13^{\prime} 00^{\prime \prime}$	15	fne. S .	68	56	8.00 A. 3.	Apr. 27	
2108	$\begin{array}{llll}35 & 16 & 00\end{array}$	$\begin{array}{llll}75 & 02 & 30\end{array}$	48	bu. M., ers. S.	66	$78 \frac{1}{2}$		Nov. 9	
2112	$\begin{array}{llll}35 & 20 & 50\end{array}$	$\begin{array}{llll}75 & 18 & 00\end{array}$	$15 \frac{1}{2}$	S., bk. Sp.	$73 \frac{1}{2}$	70		" 10	
2113	$\begin{array}{llll}35 & 20 & 30\end{array}$	$\begin{array}{llll}75 & 19 & 00\end{array}$	15	M., bk. S.	721	70		10	
2114	$\begin{array}{lll}35 & 20 & 00\end{array}$	$75 \quad 2000$	14		72	70		" 10	
								1884.	
2269	$\begin{array}{lll}35 & 12 & 30\end{array}$	$\begin{array}{llll}75 & 05 & 00\end{array}$	48	crs. G.	76	75	8.46 A. м.	Oct. 19	
2270	$\begin{array}{llll}35 & 14 & 15\end{array}$	$\begin{array}{llll}75 & 07 & 00\end{array}$	32	fne. gy. S.	--	75	9.40 "	" 19	
2271	$\begin{array}{llll}35 & 16 & 00\end{array}$	$\begin{array}{llll}75 & 09 & 00\end{array}$	26		--	75	10.45	19	
2272	$\begin{array}{llll}35 & 20 & 10\end{array}$	$\begin{array}{llll}75 & 14 & 00\end{array}$	15	S. bk. Spk.	\cdots	75	11.57	19	
2273	$\begin{array}{llll}35 & 20 & 30\end{array}$	$\begin{array}{llll}75 & 17 & 30\end{array}$	17		72	72	$12.45 \mathrm{P} . \mathrm{M}$.	" 19	
2274	$\begin{array}{llll}35 & 20 & 35\end{array}$	$\begin{array}{llll}75 & 18 & 05\end{array}$	16	"	--	71	1.22 "	" 19	
2275	$\begin{array}{lll}35 & 20 & 40\end{array}$	$\begin{array}{llll}75 & 18 & 40\end{array}$	16	"	--	71	1.43 "	- 19	
2276	$\begin{array}{llll}35 & 20 & 45\end{array}$	$\begin{array}{llll}75 & 19 & 15\end{array}$	16	"	--	71	2.08 "	19	
2277	$\begin{array}{llll}35 & 20 & 50\end{array}$	$\begin{array}{llll}75 & 19 & 50\end{array}$	16	"	--	71	2.21 "	" 19	
2278	$\begin{array}{llll}35 & 20 & 55\end{array}$	$\begin{array}{llll}75 & 20 & 20\end{array}$	16	"	--	71	2.45	19	
2279	$\begin{array}{llll}35 & 20 & 55\end{array}$	$\begin{array}{llll}75 & 20 & 55\end{array}$	16	"	--	71	3.36 "	" 19	
2280	$35 \quad 2100$	$\begin{array}{llll}75 & 21 & 30\end{array}$	16	"	--	70	4.15 "	19	
2281	$\begin{array}{lll}35 & 21 & 05\end{array}$	$\begin{array}{lll}75 & 22 & 05\end{array}$	16	"	--	70	4.35	" 19	
2282	$\begin{array}{llll}35 & 21 & 10\end{array}$	$\begin{array}{llll}75 & 22 & 40\end{array}$	14	bk. S.	--	70	5.13 "	" 19	
2283	$\begin{array}{llll}35 & 21 & 15\end{array}$	$\begin{array}{llll}75 & 23 & 15\end{array}$	14	gy. S.	--	70	5.41 "	" 19	
2284	$35 \quad 2120$	$\begin{array}{llll}75 & 23 & 50\end{array}$	13	ers. gy. S.	--	70	6.09 "	" 19	
2285	$\begin{array}{llll}35 & 21 & 25\end{array}$	$\begin{array}{llll}75 & 24 & 25\end{array}$	13		--	70	6.40 "	" 19	
2286	$\begin{array}{llll}35 & 21 & 30\end{array}$	75 75 2500	11	"	- -	70	7.13 "		
2287	$\begin{array}{lll}35 & 22 & 30\end{array}$	75 26 00	7	" ${ }^{1}$	--	69	$6.15 \mathrm{~A} . \mathrm{M}$.	" 20	
2288	$\begin{array}{lll}35 & 22 & 40\end{array}$	$\begin{array}{llll}75 & 25 & 30\end{array}$	7	S., brk. Sh.	--	. 69	6.45 "	" 20	
2289	$\begin{array}{lll}35 & 22 & 50\end{array}$	$\begin{array}{llll}75 & 25 & 00\end{array}$	7	"	--	69	7.15 "	20	
2290	$\begin{array}{lll}35 & 23 & 00\end{array}$	$\begin{array}{llll}75 & 24 & 30\end{array}$	10	"		69	7.45 *	" 20	
2291	$\begin{array}{llll}35 & 25 & 30\end{array}$	$\begin{array}{llll}75 & 20 & 30\end{array}$	15	\because	--	69	8.45	" 20	
2292	$\begin{array}{lll}35 & 27 & 20\end{array}$	$\begin{array}{llll}75 & 16 & 30\end{array}$	17		--	70	9.32 "	" 20	
2293	$\begin{array}{llll}35 & 29 & 10\end{array}$	$\begin{array}{llll}75 & 12 & 30\end{array}$	18	crs. S.	--	71	10.25 "	" 20	
2294	$\begin{array}{llll}35 & 31 & 00\end{array}$	$\begin{array}{llll}75 & 08 & 30\end{array}$	19	ers. gy. S.	--	71	11.18	20	
2295	$\begin{array}{llll}35 & 32 & 41\end{array}$	$\begin{array}{lllll}75 & 04 & 30\end{array}$	22		--	73	$12.03 \mathrm{p} . \mathrm{M}$.	" 20	
2296	$\begin{array}{llll}35 & 35 & 20\end{array}$	7458	27	"	--	71	1.15 "		
2297	$\begin{array}{lll}35 & 38 & 00\end{array}$	74 73	49	M., lork. Shi.		73	2.18 "		
2302	$\begin{array}{llll}35 & 14 & 00\end{array}$	$\begin{array}{llll}75 & 03 & 00\end{array}$	49	s., C,	71	77	$6.45 \mathrm{~A} . \mathrm{N}$.	21	
2303	$\begin{array}{llll}35 & 17 & 00\end{array}$	$\begin{array}{llll}75 & 01 & 00\end{array}$	41	fue. S.	--	77	7.11 "	"191	
2304	$\begin{array}{llll}35 & 19 & 00\end{array}$	$\begin{array}{llll}74 & 58 & 00\end{array}$	37			77	$7.40 \quad$ "		
2307	$35 \quad 4200$	745430	43	gy. \& bk. S.	57	70	4.11 Pm .	"61	
2308	$\begin{array}{lll}35 & 43 & 00\end{array}$	$\begin{array}{llll}74 & 53 & 30\end{array}$	45		--	71	5.17 *		

whorls coneare with rounded angles, and in its coloring, the characters which Mr. Gabb mentions as belonging especially to C'. Delessertii Recluz. Both may be only variations of the same species.

Shell of medium size. Spire elevated, one-third the length of the shell, tureted, abruptly tapered to a small, very acute apex. Whorls nine (tip broken), concave, distinctly angulated just above the suture, forming a prominent, romeded keel, which is nodulons on the upper whorls, becoming smooth on the lower ones. The broad, concave, subsutural band is crossed by numerons, very fine, very much curved lines of growth and several unequal, and unequally separated, impressed, revolving lines and microseopic strix. Body-whorl long, diminishing regularly toward the anterior ent, and nearly straight along the sides, angulated considerably below the suture with a prominent, rounded keel, above which there is a wide, concave subsutural band, corresponding to that of the whorls of the spire. There are about twelve broad, deep, revolving grooves near the anterior end of the whorl, the spaces between them decreasing anteriorly; the rest of the surface is covered by mequal, wavy, impressed, revolving lines and microscopic strix, crossel by the fine, flexuous lines of growth. Aperture narrow, of nearly miform width; outer lip thin, very much curved forward from the broad, deep, posterior sinus. Interior glossy, bluish white, the exterior coloring showing distinctly along the edge. Epidermis light yellowish brown, raised in small, distinct scales along the lines of growth. Color light yellow, banded with white and marked with irregnlar chestmut-brown spots. On the bolly-whorl, commencing at the shonlder, there are three broad light yellow bands, ormamented with irregular, longitudinal, chestnut-brown spots, alternating with white hands, ornamented with three or four rows of smaller chestuntbrown, romded and quadrangular spots. On the spire, the shonlder of the whorls is white, and with the subsutmal band is ornamented with irregular, transverse spots of chestulut-brown.

Length, 51^{mm}; brearth, 24^{mm}; height of spire, 18^{mm}; length of aperture, 38^{mm}; its breadth, 4^{mm}.

Mangilia psila, sp. nor.
Plate Xlu, figcre 2.
Shell of moderate size, slender, rather thick, very plain, yellowish white, with a dull, lusterless surface. Whorls abont six and a half elongated, decidedly angulated, forming an elongated, blunt spire.

Trans. Conn. Acad., Tol. Tri. jt June, 1885.

Suture defined by an indistinct, modnlating line. A very few prominent, narrow, straight ribs (six on the body-whorl) cross the whorls from suture to suture, separated by very wide, concave interspaces; a single rommed thread revolves on the periphery at the shoulder of the whorls, scarcely visible on the interspaces, but forming conspicuons, oblong nodules on the ribs. On the borly-whorl the ribs continue to the end of the canal curving in from its base, towards the aperture. On the ventral surface of the canal there are five or six very indistinct, oblique stria. The surface is everywhere erossed by conspicuons, flexuous lines of growth. Nueleus rather large, composed of two and a half regularly coiled, nearly smooth, somewhat shining whorls, the second having a row of minute nodules or beads on the periphery. Aperture long, narrow, of nearly uniform width; outer lip thin, nearly straight, hroadly rommed anteriorly, with a decided simus just below the suture; within the aperture, underneath the first external rib, there is a line of small, oblong nodules. Immer lip contimuous with the outer, with a thin, frec edge. Columella very slightly eurved, with a small horizontal fold or tooth about the posterior third.

Length, 6^{mm}; breadth, 2.5^{mm}; length of aperture, 3^{mm}; its breadth, about $\cdot 8^{\mathrm{mm}}$. A single dead specimen (No. 44,756) was taken at station 2269, in 48 fathoms.

Mangilia eritima, sp . nov.
Shell large for the genus, composed of eight very angular whorls, which form a sharp pointed, regularly tapered, turreted spire. Nuclens very small, regularly coiled, consisting of two and a half shining, light yellow whorls in striking contrast to the dull, rough surface peculiar to the rest of the shell. The first one and a half turns are perfectly smooth, while the last one is crossed by minute, transverse riblets. Suture marked by a conspicuous, rounded, undnlating cingulus or thread on the preceding whorl. The seulpture consists of prominent, straight, angular, alternating ribs (nine on the body-whorl), forming a conspicnous node at the angle, extending from suture to suture. These, with their deeply concave interspaces, are crossed by unequal, conspicuous, well-rounded, gramlated cinguli and microscopic threats. The first cingulus, defining the shoulder of the whorls, is double with the mper half slightly the larger, the sutmral one is the next in size, while hetween these there are two still finer ones; these are mequally distant from each other, the first and seeond being much
closer together than the others, and the intervening surfaces are covered by mequal, microscopic threads. Above the angle of the whorls the threals alone oceur and number abont nine. This inequality in the spiral sculpture makes the edges of the transverse ribs very rough and jaggerl. On the body-whorl there are about thirteen cinguli below the shoulder, unequal in size and unequally separated, those on the canal larger and closer together than those just above it, while the fourth one below the angle is so prominent as to make a slight angle in the ontline of the whorl. Below this angle the transverse ribs curve in toward the columella following the out line of the outer lip, and extend to the end of the canal, the curvature being most noticeable in a dorsal view. Very fine strie intersect the cinguli and the threads in the direction of the lines of growth, rendering them granular and give the appearance to the shell, when dry, of being covered with a fine, gray dust. Aperture long, narrowovate, with a moderately long, rather narrow canal. Outer lip not thickened, with a comparatively thin edge and a broad, moderately deep simus extending from the suture to the angle. Columella slightly curved; inner lip marked by a narrow stripe of conspicuons red enamel. Color light yellow-brown; interior of aperture of the same couspicuous red color as the inner lip. In young specinens this coloring is wanting.

Length, nearly $8^{\text {mm }}$; breaduh, $3^{\text {man }}$; length of aperture, $3.5^{\text {mm }}$; its brealth, 1^{mm}.

One adult and four yomg specimens were taken in it to 17 fathoms.

Mangilia ephamilla Bush.
Report U. S. Com. Fish and Fisheries, p. 78, for 1883, 1885.
Plate NLY, figures 4, $4 a$.
Shell of moderate size, rather stont, with a regularly tapered, acute spire of about five sharply angulated whorls, besides the muclens. Suture marked ly a distinctly raised, rombled, undulating spiral thread. The uncleus is small, prominent, semi-transparent and glassy, composed of about two and a half turns. The apical whorl is small, rather prominent and with the second is very smooth; the third is crossed by delicate, curved, transverse riblets rendered somewhat nodulous by the intersection of a single, faint, revolving, median thread; on the other whorls there are about nine, broad, prominent, acute, straight, longitudinal ribs extending from suture to suture, and separated by deep, concave interspaces about equal in
width to the ribs. The whole surface is covered with distinctly raised, rounded cinguli and microscopic threads roughened by the fine lines of growth, and have the appearance, under the microscope, of being covered with mimute grains of sand. The cingulus at the centre and defining the shoulder of the whorls is the most conspicuous; above this there are about five finer ones, and below, on the whorls of the spire, two or three, the number increasing to ten or twelve on the body-whorl. The aperture is a little less than half the length of the shell, narrow, oblong, broalest at its posterior third, pinched up anteriorly into a straight, slightly elongated canal. Outer lip, thin, with a sharp edge and a shallow sinus just below the suture ; immer lip inconspicuous. No operenlum.

Color, in alcohol, deep yellow with white ribs and canal, changing in adult specimens to deep brown with yellow ribs and canal.

Length, $6 \cdot 5^{\mathrm{mm}}$; breadth, 3^{mm}; length of aperture, 3^{mm}; its breadth, $\cdot 5^{\mathrm{mm}}$.

Several specimens both living and dead, in 14 to 48 fathoms.
'This species is closely allied to M. cerina, but differs in having a stonter form, more angularly shouldered whorls and especially in having acnte, very prominent, straight ribs extending from suture to suture.

Mangilia ceroplasta, sp. nov.
Shell of medium size, stont, waxen-yellow, with all abruptly tapered, blunt spire, less than half the length of the shell, composed of six and a half well rounded whorls. Nuclens large, regnlarly coiled, rather blunt, somewhat lustrons, of two and a half whorls; the second is crossed ly four mequal, equally distant, nodulons carine, the first, just below, and the fourth, just above the suture, are very fine and quite indistinet. Below this the whorls are crossed from suture to suture, by little elevated, rounded, straight ribs separated by intervals about equal to their own width; both of these are intersected by a distinct median carina and three or form less conspicuous equally distant ones below it. On the body whorl there are about sixteen smaller ones, somewhat erowded anteriorly. Very fine microscopic threads cover the intervening surface and all are roughened, or rendered gramulons, by the intersection of the fine striat in the direction of the lines of growth. Aperture broad-ovate; onter lip thin, broadly eurved posteriorly, with a very slight inbending anteriorly. Colmanela slighty curved. Inmer lip shown by a narrow strip of dark colored enamel. Color light yellow with a narrow band of dark red-
brown just below the suture, and a similar one on the middle of the hody-whorl.

Length, $5 \cdot 5^{\text {mim }}$; breadth, $3^{\text {min }}$; length of aperture, $3^{\text {mum }}$; its breadth, 1^{man}.

A few dead specimens, in 10 to 17 fathoms.

Mangilia melanitica Dall, variety oxia Bush.
Report U. S. Com. Fish and Fisheries, p. 78, 1883, for 1885.
Plate ILT, flgures 3. $3 \boldsymbol{u}$.
Shell small, slender, fusiform, lustrons, transparent, glassy, with ia tall, regularly tapered, acute spire. Whorls eight slightly convex, angulated and carinated. Suture defined by a distinct, smooth, rounded thread. Nuclens large, acute, nearly smooth, of three and a half rapilly tapering coils, with a small, very prominent, decidedly upturned apical whorl ; the two lower whorls have a distinct median keel. The sculpture consists of abont seventeen very thim, sligthly raised, strongly recurved riblets extending from suture to suture, rendered nodulous by the intersection of a rather broad, smooth, rounded, median carina. The greatest curvature of the transverse riblets is above the carina on the wide, slightly concave, subsutural band, which is crossed also by the lines of growth, and in some specimens, by numerous, microscopic, revolving strie. On the bodywhori, from the posterior end of the aperture to the end of the canal, there are about twelve rather fine, smooth, rounded cinguli. The first, a little wider and more prominent than the others, sitnated just above the suture, is rendered nodulons by the crossing of the riblets at which they abruptly end, and is separated from the second by a yuite wide, smooth space; the distance between the others decreases so that, on the camal, they are quite close together. On some of the specimens there is an additional line midway between the carina and the first cingulus ; and three or four of the riblets, and rarely all of them, on the dorsal surface extend, as nearly straight lines, to the base of the canal. The aperture, in immature specimens, is rather broad-ovate, with a thim, slightly curved outer lip with a very shallow, wide posterior sinus and the colmmella has a slight, sigmoid curvature, while in more mature specimens the aperture is very narrow, oblong, with a very much thickened outer lip, forming a conspicnons varix with a thin, brown edge bending in, partly closing the aperture, and with a deep, narrow, oblique simus considerably below the suture. The onter lip also increases posteriorly and joins the inner
lip a little below the suture, thus considerably shortening the aperture. Some specimens have about four smooth, raised, rounded, revolving threads on the interior of the aperture, which form, by their abrupt termination, conspicuons nodules within the margin of the outer lip. Colmmella, nearly straight, and has, just within the thin, free ealge of the imner lip, a row of from four to six very minute, white cremulations. Canal very short, narrow at its base, but suddenly widened by the abrupt, outward turning of the lip.

Color of fresh specitnens amber, with lighter tinted carina, and redbrown edged aperture; some specimens are irregularly spotted with red-brown.

Length of a medium sized mature specimen, $5^{\text {min }}$; its breadth, 2^{mm}; length of aperture, 1.75^{mm}; its breadth, $\cdot 5^{\mathrm{mm}}$. A specimen of the same length withont the thickened lip, has an aperture $2^{\text {man }}$ long and nearly 1^{mm} broad.

Very abondant, both living and dead, in 7 to 48 fathoms.
Mr. W. H. Dall considers this shell identical with a species from Florida to which he has given the name, melunitiere (MSs.), but admits a varietal difference.

Mangilia oxytata Bush.
Report U. S. Com. Fish and Fisheries, p. 80, for 1883, 1885.
Plate XLV, figure 1.
At station 2108, in 48 fathoms a single dead specimen (No. 35,395), somewhat resembling the preceding, was taken.

It consists of about eight whorls; those of the spire strongly angulated just below the middle, and ornamented with about nine rather prominent, straight, transverse ribs, commencing at the periphery and extending to the suture; these, with their wide, concave interspaces, are erossed by three rather strong, nearly smooth, rounded, equally distant earine, the third defining the suture. Smooth, oblong nodules are formed by the intersection of these with the ribs, those on the periphery being the most conspicnous, as the first earina is slightly wider than the other two. The subsutural band is wide, slightly concave, erossed by delicate, ex-eurved, raised lines or riblets, extending from the suture to the median carina ; and by three or four fine, slightly raised, equally distant, revolving threads. The muclens is large, semi-transparent, shining, of four and a half turns, with a small, exceedingly prominent, decidedly upturned, apical whorl, which, with the two following, is smooth and glassy; the next two have a
fine, smooth, median carina. On the body-whorl the ribs continue nearly to the base of the canal and are crossed by small, nearly smooth, rounded, equally distant cinguli, which commence a little below the third principal carina and continne to the end of the canal. The entire surface is covered with very minnte, microscopic grambes. Aperture narrow-ovate, pinched up anteriorly into a short, rather narrow, straight canal. Outer lip very much thickened, with a conspicuous varix, and a thick, smooth, rounded, very irregnlarly curved, light brown edge, and a deep, narrow sims considerably below the sutmre, at the angle of the shonlder ; inner lip inconspicuous; colnmella slightly curved.

Color yellowish white, tinged with brown just below the suture, and on the anterior part of the hody-whorl.

Length, 5^{mm}; breadth, 2.5^{mm}; length of aperture, 2^{mm}; its breadth, 1^{mm}.

This species, although closely resembling the precerling, is sufficiently characterized in having a much stonter form, more acute apex, more angularly shonldered whorls, fewer and more prominent ribs, more numerons cinguli, and especially in having its entire surface microscopically granulated.

Mangilia (?) glypta Bush.
Report U. S. Com. Fish and Fisheries, p. 80, for 1883, 1885.

Plate XLT, figures 5, 5%.

Shell small, semi-transparent, fusiform, with about five slightly convex whorls, below the melens, which consists of three and a half smooth, transparent, white, glassy, regularly increasing inrns. The apical whorl is small, not very prominent, somewhat oblique. The senlpture consists of abont ten rather indistinct, narrow, longitudinal ribs, and broad, rounded, very conspicnous cinguli, which, in crossing the ribs, form prominent, smooth, white, oblong beads or nodules; there are three rows of these on the whorls of the spire, and five or six on the borly-whorl; the second and third are the most prominent and farther apart than the first two. Cinguli without nodules contime to the end of the canal, the transverse ribs disappearing at its base. Aperture a little more than one-third the length of the shell, narrow-ovate, pinched up anteriorly into a very narrow, short canal; onter lip thickened, forming a slight varix, with a thin, white edge and a shallow simus close to the sntmre, with one or two, minute, white cremlations just within its posterior edge; there are also about
five similar but much larger cremulations on the inner margin of the lip, extending from the sinus to the base of the eamal. Inner lip contimuous with the outer, with a free, thin, white edge, having four or five minute white cremulations just within its imner margin. Canal short, narrow, bent slightly backwards at its anterior end, with a decided, but shallow notch. Epidermis raised in conspicuons folds along the lines of growth.

Color, of fresh specimens, light yellowish brown under a lighter yellow epidermis.

Length of a specimen with imperfect nucleus, 5^{mm}; its breadul, $2 \cdot 5^{\text {min }}$; length of aperture, $2 \cdot 5^{\mathrm{mm}}$; its breadth, 1^{mm}.

Two fresh and several worn specimens, in 16 to 48 fathoms.
The conspicnous epidermis prevents this species being rightly placed in the Mangilia group, but as no specimens with the amimal have as yet been fomd, its position camot be determined with certainty, althongh in its general appearance and lamelliform epidermis it closely resembles a Pisanir.

Acus protextus (Conrad) Dall.
Cerithium motextum Conrad, Proc. Acad. Nat. Sci. Phil., vol. iii, p. 26, 1846.
Acus protextus Dall, Proc. UT. S. Nat. Mus., vol. vi, p. 325, 1883.
Three dead specimens (No. 35,383), station 2108 , in 48 fathoms.
Racmigiossa.

Marginella Smithii Verrill.
These Transactions, vol. vi, pp. 420, 452, 1885.
A number of specimens, in 15 to 43 fathoms.
Nassa consensa Rav.
Ravenel, Proc. Acad. Nat. Sci. Phil., vol. xiii, p. 13, 1861.
Tryon, Amer. Mar. Conch., b. 35, 1873.
Rather common in 10 to 49 fathoms.
Astyris pura Verrill.
These Transactions, vol. v, p. 515, 1882.
Two specimens, living and dead, in 14 and 15 fathoms.

> Thenogionsa.

Cyphoma gibbosa (Tinné) Adams.
H. \& A. Adans, fieumen, vol. i, p. 271, pl. 28, fig. 8, 1858.

Chenu, Mamuel de Conchyliologie, vol. i, p. 273, fir. 1790, 1859.
One dead specimen (No. 40,766) ocenmed at station 2280 , in 16 fathoms.

Lunatia heros (Say) H. \& A. Adams.
Gould, Invert. Mass., Binney's ed., pp. 338-310, figs. 608-610, 1870.
Verrill, Invert. Anim. Vineyard Sd., p. 646, pl. 23, figs. 133-136, 1874.
A few dead specimens, in 16 to 68 fathoms.
Sigaretus maculatus Say.
Say, Amer. Conch., vol. iii, pl. 25, 1831; Conch. U. S., p. 176, pl. 25, 1858.
Tryon, Amer. Mar. Conch., p. 61, pl. 10, fig. 106, 1873.
Two dead specimens (No. 38,750), station 2276, in 16 fathoms.

Cerithiopsis Emersonii Adams.
Gould, Invert. Mass., p. 387, fig. 649, 1870.
Verrill, Invert. Anim. Vineyard Sd., p. 648, pl. 24, fig. 151, 1874.
Rather common in $1+$ to 16 fathoms.

Triforis turris-thomæ (D'Orb.) Dall.
Cerithium turris-thomce D'Orbigny, Moll. Cuba, vol. ii, p. 155. atlas, pl. 23, figs 10-12, 1853.
Triforis turris-thome Dall, Bull. Mus. Comp. Zool., vol. ix, p. 81, 1881.

$$
\text { Plite XLV, figure } 6 .
$$

One dead specimen (No. 35,807), station 2114, in 14 fathoms.
Cæcum pulchellum stimp.
Gould, Invert. Mass., p. S15, fig. 583, 1870.
Verrill, Invert. Anim. Vineyard su., p. 649, pl. 24. lig. 158, 1874.
Common in 14 to 17 fathoms.

Cæcum Cooperi Smith.
Verrill, Invert. Anim. Vineyaril Sd., p. 649, 187t; these Transactions, vol. v, p. 525, 1882 ; vol. vi, pl. 28; fig. 8, 1884.

A few specimens were found with the precenling.
Cithna (?) olivacea V.
These Transactions, vol. vi, p. 185, pl. 29, f. 5, 1884.
A single dead specimen ocenred at station 2273 , in 17 fatloms.
Trans. Conn Acad, Tol. VI.
58 JUNE, 188 s.

Skenea trilix, sp. nov.
Bush, Report U. S. Com. Fish and Fisheries, p. 82, for 1883, 1885.
Plate XLV, figures 7, 7a.
Shell small, disk-shaped, with the spire nearly flat, but with the nuclear whorls rising a little above the level of the last whorl. Whorls four or more, the body-whorl strongly tricarinate, one carina at the periphery, one around the base and one around the shonlder, the spaces between them equal, convex and nearly smooth. The puper carina shows on all except the nuclear whorls and the one next following; above this carina the whorl is flattened or slightly concave, joining the preceding whorl nearly at right angles, but swelling a little close to the suture; on this band four or five faint spiral strie sometimes oceur; more rarely traces of them are found below the carina and on the base. On the basal side, the last whorl is pretty regularly rounded and strongly convex and the umbilical depression is large and deep, funnel-shaped, extending to the apex. Within this, the whorls are distinctly spirally grooved and sometimes its border is defined by a small, distinctly raised carina. Apertme nearly cirenlar though slightly angulated at the carine. Lip a little thickened, slightly expanded next the body-whorl; inner lip represented only by a thin, closely adherent layer of enamel. Nucleus small, a little prominent, smooth, glossy and subvitreous, the apical whorl minute and slightly turned up. Surface of the shell lastrons and usually nearly smooth thongh often showing faint, flexnons lines of growth.

Dry specimens are more or less opaque, yellowish white.
Fresh specimens, preserved in alcohol, are very thin, nearly transparent, the animal matter showing distinctly beneath. The entire surface of these is crossed by numerous, very delicate, regnlar, equally distant, microscopic lines in the direction of the lines of growth.

Operculum very thin, horny, light yellow, rommd, of about five equal whorls, mucleus at the center.

Animal with short, stont tentacles; prominent eyes situated at their bases; and a rather broad, bilobed suont.

Breadth, 3^{mm}; height, 1^{mm}.
Very abundant, both alive and dead, in 7 to 17 f:athoms.

Skenea lirata V.

Omalaxis (?) lirate Verrill, these Transactions, vol, v, p. 529, 1882; vol. vi, p. 452, 1885.

Several specimens were fomd in 10 to $1 t$ fathoms.

Ptenoglossa.

Scalaria leptalea, sp. nov.
Shell comparatively thin and delicate, rather stont, large, composed of about ten regnlarly tapered, very convex whorls. The meleus is small, and consists of two and a half smooth, shining whorls; below this the surface is crossed by delicate, thin, slightly raised, reflected, oblique ribs, between which there are very numerons, exceedingly fine cinguli, ahout fifteen to the millimeter. On the upper whorls the ribs are very mumerous, exceedingly fine and very close together, becoming less numerous, coarser and farther apart on the lower ones. The number decreases in a ratio of ten, there being thirty-six on the eighth whorl, twenty-six on the ninth, and sixteen on the bodywhorl. Aperture ovate; onter lip thin with a reflected edge; inner lip thickened and reflected anteriorly.

Color bluish white.
Length of the largest specimen, with imperfect muclens, 15.5 mm ; breadth, $5 \cdot 5^{\mathrm{mm}}$; length of aperture, 4^{mm}; its breadth, about 3^{mm}.

One adult and several young specimens, in 14 to 16 fathoms.
Scalaria teres, sp. nov.
Plate XlV, figure 8.
Shell very small and slender, thin, delicate, semi-transparent, very shining. Whorls ahont nine, very convex, regularly coiled, crossed by numerons (about twenty-seven on the body-whorl) very thin, delicate, slightly raised, a little oblique ribs, having an almost imperceptible angle just below the suture. Nuclens large, delicate pink, consisting of three and a half perfectly smooth, shining whorls. Aperture oval; inner lip thickened, slightly reflected at the base. Color bluish white with a delicate pink apex.

Length, 4^{mm}; breadth, 1.5^{mm}; length of aperture, about 1^{mm}; its breadth, abont $\cdot 5 \mathrm{~mm}$.

This species can be readily recognized by its size, delicacy and very brilliant luster.

Two living specimens from stations 2275 and 2276 , in 16 fathoms.

Gyinnoglossa.

Niso ægleës Bush.
Report U. S. Com. Fish and Fisheries, p. 83, for I883, 1885.

$$
\text { Plate NLT, figures } 10,10 a .
$$

Shell of moderate size, regnlarly tapered, conical, thin, semi-transparent, smooth, shining, consisting of abont twelve, closely coiled.
flattened whorls, with the suture indistinct defined by a thread of dark chestnut-brown, aloove and below which there is an indefinite band of yellowish white, gradually shading, towards the centre of the whorls, into light yellow or brown, sometimes mingled with purple. The molens is small, consisting of about three regularly coiled whorls of a light purple or amethystine color. Base prominent, angulated, with a moderately large and deep umbilicus, margined by a dark chestuat-brown threal. Aperture nearly quadrangular, the angles being formed at the termination of the dark threads, defining the base and the umbilical region, somewhat produced at the anterior angle, forming an indistinct notel. Outer lip thin, with a dark chestmutbrown edge; inner lip regularly curved, slightly reflected over the umbilicus, with a somewhat thickened, dark chestnut-brown edge; just back of this there rms across the base, from within the umbiticus to the sutiral thread, a thread or streak of the same dark chest-mut-brown color, and throughout the entire length of the shell, with the exception of the nuclens, similarly colored streaks occur, crossing the whorls at irregular intervals. In specimens somewhat eroded, fine but distinct lines of growth cross the whorls at pretty regular intervals, and oceasionally even in fresh specimens indications of them are seen. Operculnm horny, very thin, light yellow.
Leugth of the largest specimen, $7 \cdot 5^{\mathrm{mm}}$; breadth, $3 \cdot 5^{\mathrm{mm}}$; length of aperture, $2 \cdot 5^{\mathrm{mm}}$; its breadth, 2^{mmn}.

Common in 7 to 32 fathoms.
Odostomia engonia, sp. nov.
Shell long, rather stout, white, lustrons, obelisk-shaped, consisting of seven and a half flattened whorls, distinctly chamfered above the suture which is canaliculate. The surface is apparently smooth except a rather prominent, rounded, revolving thread at the angle of the whorls, but under the microscope it is covered with numerons, muequal, indistinct strie. Nucleus very small, just showing above the first whorl. Body whorl distinctly angulated at the periphery where there is a prominent, romded thread, with a somewhat elongated, romded base. Umbilicus small, deep, nearly concealed by the retlected imer lip. Aperture oval, anteriorly considerably produced beyond the base. Columella with a small, distinct fold within the aperture not seen in a front view.

Length, $5^{\text {min }} ;$ breadth, $2^{\text {mm }}$; length of aperture, $1 \cdot 8^{\text {mm }}$; its breadth, 1^{mmn}. A more mature specimen from Beanfort, N. ©., is 6.5^{mm} long; $2 \cdot 8^{\text {mum }}$ broad; with an aperture $2^{\text {mm }}$ long and $1^{m m}$ broad.

One living and a few dead specimens, in 15 and 16 fathoms.

Odostomia engonia, var. teres nov.
Plate XLV, figure9.
A similar but much more slender shell was foumd with the preceding.
The whorls are more flattened and have a distinct, impressed, spiral line just below the angle. The nuclens is large and very oblique. The aperture is not so much produced anteriorly. In young specimens the fold is very conspicuons.

A specimen with the same number of whorls as the one measured above is $4 \cdot 5^{\operatorname{man}}$ long; $1.5^{m m}$ broad ; aperture, $1^{m n n}$ long and abont $\cdot 8^{m m}$ broad.

Odostomia cancellata (D'Orb.)
Chemnitziu cancellutu D'Orbiguy, Moll. 'uba, vol. i, p. 225, allas, pl. 17, figs i-3, 1853.

A few specimens were found in 11 to 16 fathoms.

Teftibleaneminta.

Actæon puncto-striatus (Alams) Stimp.
Tornatelle puncto-striale Gould, Invert. Mass., p. 224, fig. 515, 1870.
Acteron puncto-striute Verrill, Invert. Anim. Vineyard Sd., p. 664, pl. 25, fig. 165, 187.

Plate XLV, figure 17.
A number of specimens were found in 7 to 17 fathoms, but they are moch larger than the typical form from Vineyard Sound and have finer and more closely punctate spiral sculpture, a more conspicuons fohl on the colmmella, and some specimens have three distinct bands of delicate pink color on the body-whorl, and one on the preceding whorl.

Philine Sagra (D'Orb.)

Bulla Sugru D'Orbigny, Moll. Cuba, vol. i, p. 123, atlas, pl. 4, figs. 5-8, 1853. Plate NLV, figures $16,16 \alpha$.
Two dead specimens (No. 38,442), station 2113, in 15 fathoms.
Cylichna biplicata (Lea).
Bulla biplicuta Lea, Proc. Bost. Soc. Nat. Hist., 1. 204, 1841.
Utriculus biplicutus Tryon, Amer. Mar. Conch., p. 104, pl. 13, fig. 21:3, 1873.

$$
\text { Plate XLV, figure } 14 .
$$

Very aboudint in 7 to 17 fathoms; rare in 48 fathoms.

Cylichna cælata, sp. nov.
Plate XLV, figure 15.
Shell rather thick, opaque white, with a slightly lustrons surface, of moderate size, somewhat conical in shape, with a trmeated tip and an elongated, tapering base. Spire concealed within a very deep pit; the two or three whorls are distinctly visible in an end view and are crossed ly mumerons, delieate, little enived riblets which curve over the top of the body-whorl extending down a short distance, and gradually blend with the flexnons lines of growth. Commencing about the middle of the whorl and covering the base there are numerons, fine, punctate, spiral lines, very much crowded anteriorly. Λ_{p} erture very harrow, expanded anteriorly; outer lip a little produced at the top, bending round somewhat abruptly, then following the outline of the body-whorl, and joining the inner lip in a regular curve; imer lip much thickened at its base with a minute umbilical chink behind it. Color yellowish white.

Leugth, 3^{mm}; greatest l,readth, $1 \cdot 5^{\mathrm{mm}}$.
Rare in 15 to 43 fathoms.

Bulla Candei D'orb.

Moll. Cuba, vol. i, p. 128, atlas, pl. 4, figs. 1-3, 1853.
Plate XLV, figure 13.
Very common in 7 to 48 fathoms.
Volvula oxytata, sp. nov.
Volvula, sp., Bush, Report U. S. Com. Fish and Fisheries, p. 84, for 1883, 1885.

$$
\text { Plate XLV, figure } 12 .
$$

Shell rather small, somewhat cylindrical, with a sharp, spike-like apex and a tapering, rounded, anterior end, rather thin, semi-transparent, somewhat lustrons, with four or five very fine, indistinct, punctate, spiral lines on each end and very indistinct, microscopic strise on the intervening surface. Aperture long, very narrow, expanded anteriorly; outer lip thin, following the curvature of the body-whorl to just below the middle where it continues in a straight line and joins the imer lip in a broad eurve; imer lip very thin, slightly reflected anteriorly over a slight umbilical chink. Color bluish-white mider a pale yellow epidermis.

Length of one of the largest specimens, $4^{\text {mm }}$; breadth, $1.5{ }^{\text {mmm }}$.
Not meommon in 7 to 17 fathoms.

Volvula minuta, sp nov.
Plate XLT, figure 11.
Shell very small, spindle-shaped, thin, semi-transparent, white, destitute of sculpture with the exception of three or four very indistinct, punctate, spiral lines on the base. Aperture rery narrow, gradually expanding anteriorly from about the middte, with a regularly curved onter lip. Columella with a slight twist or fold, with a very small umbilical chink behind it. Epidermis indistinct.

Length of the largest specimen, $2 \cdot 55^{\mathrm{mm}}$; brealth, 1^{mm}.
A few specimens occurred in 14 to 16 fathoms.
Pleurophyllidia Cuvieri Meckel.
Clenu, Manuel de Conchyliologie, vol. i. p. 399, figs. 3024, 3025, 1859.
Two specimens occurred in 15 and 27 fathoms.

Nudebleanchiata.

Scyllæa Edwardsii V.

These Transactions, vol. r, p. 550, pl. 43, f. 10, 1882.
Several young specimens were taken, at the smface, near station 2108.

Heteropoda.

Atlanta Peronii Les.
Verrill, these Transactions, vol. v, p. 529, 1852 ; vol. vi, pl. 28, figs. 4, $4 u, 1884$. Several dead specimens, in 15 to 843 fathoms.

Atlanta inclinata Soul.
Verrill, these Transactions, vol. ri, p. 211, 1884.
A few dead specimens, in 48 to 843 fathoms. Alive at the surface.

Pteroiola.

Cavolina tridentata Gray.
Verrill, Invert. Anim. Vineyard Sd., p. 669, pl. 25. fig. 1ヶ7; these Transactions, vol. v, p. 554, figs. 6, 7, 1882

A few dead specimens, in 16 to 84: fathoms.
Cavolina uncinata (D'Orb.) Gray.
Terrill, these Transactions, vol. v, p. $554,1882$.
Common in 16 to 843 fathoms.

Cavolina longirostris Les.
Verrill, these Transactions, vol. v, p. 555, 1882.
Very abundant in $1+$ to 938 fathoms.
Cavolina quadridentata (Les.)
Verrill, these Transactions, vol. vi, p. 212, 1884.
A few specimens, in 15 to 142 fathoms.

Cavolina inflexa (Les.) Gray.
Verrill, these Transactions, vol. v, p. 555, 1882.
One specimen, in 48 fathoms.
Diacria trispinosa Gray.
Verrill, Invert. Anim. Vineyard Sd., p. 6699, 1874.
Common in 15 to 938 fathoms.

Clio pyramidata Linné.

Verrill, these Transactions, vol. v, p. 555, 1882.
Rather common in 16 to 938 fathoms.
Styliola virgula (Rang).
Verrill, these Trausactions, vol. v, p. 557, 1882 ; vol. vi, p. 213, 1884.
One specimen, in 15 fathoms.
Styliola subulata (Quoy and (Gaimard).
Verrill, these Transactions, vol. vi, p. 213, 1881.
A few specimens, in 15 to 843 fathoms.

SOLENOCONCHA.

Dentalium leptum Bush.
Report U. S. Com. Fish and Fisheries, p. 8.4, for 1883, 1885.
Plate NhV, figuris 18, $18 a$.
Shell of morlerate size, very slender, slightly curved posteriorly, rather thin and delicate, with a very smooth and glossy surface, destitute of senpture, exeept at the posterior end, which is covered with mumerons, crowded, very fine, raised, longitndinal lines visible only moder the lens. Anterior aperture roum, with a sharp, thin edge; posterior apertmre somewhat thickened, very small, romm, slimhtly obligue, with a very deep, narow, dorsal noteh. Color delieate sal-
mon, or yellow, gradually shading into white toward the anterior end. Very young specimens are white, very thin and glassy.

Length, 31.5^{mm}; diameter of anterior aperture, 2^{mm}; of posterior aperture, about $\cdot 5 \mathrm{~mm}$.

Common in 7 to 48 fathoms.

Cadulus Carolinensis Bush.

Report U. S. Com. Fish and Fisheries, p. 85, for 1883, 1885.

$$
\text { Plate XLV, flgure } 19 .
$$

Shell of medium size, semi-transparent (perfectly fresh specimens are almost transparent and glassy, showing the animal quite distinctly) very glossy, white, circular throughout its entire length. Greatest diameter at about the anterior third, diminishing slightly to the round, very oblique, anterior aperture, and backward to the posterior end, at first very gradually and farther back very rapidly. Curvature well marked in some specimens, very slight in others, nearly uniform dorsally, but ventrally, most decided in the posterior third. Posterior aperture very small, round, a little oblique, with four small, distinct notches, two on each side.

Length, 9.5^{mm}; greatest diameter, about 2^{mm}; diameter of anterior aperture, 1^{mm}; posterior aperture, $\cdot 4^{\mathrm{mm}}$.

Very abundant in 7 to 48 fathoms.
Cadulus incisus, sp. nov.
Plate XLV, figure 20.
Shell rather small, slender, somewhat cylindrical, slightly contracted dorsally, just back of the anterior aperture, tapering and curving gradually from about the middle toward the posterior end. It is thin, semi-transparent and very lustrous. The anterior aperture is oval, and a little oblique; the posterior aperture is very oblique with four narrow, very deep notches, two on each side, forming four conspicuous points on the end of the shell.

Length of largest specimen, 8^{mm}; diameter anterior aperture, 1^{mm}; posterior aperture, $\cdot 5^{\mathrm{mm}}$. The other specimen is smaller and more slender, measuring 7^{mm} in length; with the anterior aperture - s^{mm} in diameter and the posterior less than 5^{mm}.

Trans. Conn. Acad., Vola VI.

LAMELLIBRANCHIATA.

Martesia cuneiformis (Say).
Pholas cuneiformis Say, Journ. Phil. Acad., vol. ii, p. 322, 1822 ; Conch. U. S., 1. $108,1858$.
Martesia cuneiformis Tryou, Amer. Mar. Conch., 1, 127, pl. 17, figs. 267, 268, 1873.
A single valve (No. 40,800) was found at station 2276 , in 16 fathoms, and living specimens occurred, imberded in wood, at Beanfort, N. C.

Diplothyra Smithii Tryon.

Proc. Phil. Acad., 1862 ; Amer. Mar. Conch., p. 128, pl. 17, fig. 269, 1873.
A single living specimen, imbedded in limestone, was fonnd in shatlow water at Beaufort, N. C.

Siliqua costata (Say), H. \& A. Ad.
Machera costata Gould, Invert. Mass., p. 47, fig. 370, 1870.
Siliqua costata Verrill, Invert. Anim. Vineyard Sd., p. 675, pl. 32, p. 244, 1874.
A fragment was found at station 2277 , in 16 fathoms.

Corbula Swiftiana C. B. Adams.
Contributions to Conchology, vol. i, p. 236, 1852.
Separatc valves were found in very great abundance, in 7 to 48 fathoms and a few living specimens, in 16 to 48 fathoms.

Corbula disparilis D'Orbigny.
La Isla de Cuba, v, Moluscos, p. 322, pl. 27, figs. 1-4, 1845.
Separate valves were very common in 14 to 48 fathoms.

Neæra costata Bush.
Report U. S. Com. Fish and Fisheries, p. 85, for 1883, 1885.
Plate XLV, figure 21.
Shell moderately thick, compressed, triangular-ovate, with a contracted and somewhat elongated rostrum, and with three or four very prominent, curved, distant, radiating ribs on the convex part of the valves, and a few smaller and closer ones anteriorly. Umbos high, smooth; beaks somewhat curved backward. The dorsal margin, from the beaks to the end of the rostrum, is strongly and regularly concave, the rostrim being a little upturned or straight at the tip; anteriorly,
the dorsal margin is convex, and falls off abruptly to the obtusely rounded anterior end. The ventral margin is broadly rounded and projects ontward in an acute angle, at the projection of each of the principal ribs; the intervals between these angles are msually concave, and beyond the last rib the outline recedes in a concave curve to the origin of the rostrum, which is rapidly narrowed to near the tip. Of the three prineipal radiating ribs, the middle one runs from the beak nearly to the middle of the ventral margin, eurving a little backward; the posterior one terminates abont midway between the former and the end of the rostrm, enrving strongly backwarl; the most anterior one ends about midway between the middle one and the anterior end of the shell ; midway between this and the middle one, there is a smaller secondary rib. These three primary ribs are strongly elevated, not very broad, with the summits rather thin, finely notched by the concentric lines of growth; the most posterior one is the largest and highest, and projeets the most at the margin. Between these ribs the spaces are wide and strongly coneave, marked by momerous and regular lines of growth. On the anterior end of the shell there are two or three smaller radiating ribs, which are separated by intervals about equal to their own breadth, and give the margin a slightly erenulated appearance. The rostrum is narrow, strongly compressed, with both the dorsal and ventral outline concave. Two small ridges run from the beak to the tip of the rostrum, separated by a very narrow, flattened area. The right valve has two well-marked lateral teeth, the posterior one considerably longer and larger than the anterior; between these there is a small, ovate cartilage pit. The inner surface of the valves shows deeply indented grooves corresponding to the primary exterual ribs. Color, opaque white. Epidermis indistinct.

Length of the largest specimen, 6^{mm}; height, $4^{\text {min }}$; thickness, 4^{mm}.
Four living and two dead specimens were fonnd at stations 2108 and 2269 , in 48 fathoms.

This species bears considerable resemblance to N. ornatissima D'Orb., but the ribs are less mumerons, more curved, and the primary ones are much larger and more widely separated, and the shell is less convex.

Neæra paucistriata Dall. MSS.
Three living specimens, found in 16 and 17 fathoms, were identified by Mr. Dall as this species.

Pandora Carolinensis, sp. nov.
Pandora, sp., Bush., Report U. S. Com. Fish and Fisheries, p. 86, for 1883, 1885.
Shell of moderate size, triangular-ovate, with a short, acntely angled posterior end and an elongated, slightly rostrated anterior end. Valves very unequal, overlapping; the superior one very convex; the inferior one flat or shightly concave. Beaks very small, curved inward and hackward, situated near the posterior end. Anterior dorsal margin very straight; posterior very obliqne, slightly concave just behind the beaks; ventral margin much swollen along the middle, pretty regularly enrved to near the anterior end where it is slightly contracted and forms a short, narrow rostrum. Right valve the larger, very convex, moderately thick, with a dull surface, roughened by the irregnlar, simous lines of growth. Extending from the beaks perpendicularly aeross the valve is a distinct, thongh slight, depression in the surface, in erossing which the lines of growth abruptly curve downward. A prominent, rounded ridge runs from the beaks to the anterior ventral margin, forming a narrow dorsal area crossed by the lines of growth. Below the ridge the surface is a little concave and forms a slight contraction in the margin, more apparent in some specimens than in others. Anterior hinge plate is a little thickened, very narrow ledge, on which the left valve rests, extending nearly the entire length of the dorsal margin; behind the beaks is a thick, conspicuous, triangular process or tooth, which is concave next the margin of the valve; in front of this, directly under the beaks, is a narrow, oblique cavity, with the very narrow cartilage-pit in front of it. Left valve considerably smaller and very thin, with a conspicuons furrow ruming out from beak, corresponding to the ridge in the opposite valve, above which the valve bends slightly outward. Besides the irregular lines of growth the surface is cut by numerous, about fourteen, unequally distant, impressed, radiating lines. In front of the beaks the edge of the valve is bent in at right angles, forming a gradually widening area which laps over the opposite valve; directly muder the beak is a thick, prominent, elongated, oblique tooth, and a very much thinner, longer, less elevated, more oblique, wedge-shaped one in front of it with the narrow cartilagepit between; extending from behind the beaks along the dorsal margin is a rather delicate ridge, which in some speciriens shows only as a slight thickening of the edge, and in others it is separated from it and shows as a ridge or tooth. Pallial impression well marked; pallial line formed by a line of indistinct dots. Interior of the shell very pearly.

Length of one of the largest specimens, $16^{\text {man }}$; height, across center, $8^{\text {mun }}$; thickness, about $3^{\text {mm }}$.

Separate values were very ahmont in 7 to 48 fathoms; and a few young living specimens were fond in 15 to 17 fathoms.

Clidiophora, sp. indet.
A single left valve, $\left(\mathrm{No}_{0} 45,202\right)$, quite distinet from C. trilineate, or any species known to me, occurred at station 2275 , in 16 fathoms.

Valve small, thin, very much distorted. Beaks minute, bending strongly outward, sitnated far over toward the posterior end; anterior dorsal margin enrving abruptly upward from the beak and then contiming in a straight line; posterior dorsal margin very short, oblique and slightly concave, foming an acute angle at its junction with the ventral margin. Ventral margin much eurved, the greatest enrvature near the anterior end, where it bends inward toward the beaks, forming a very slight rostrum. Surface very rough. 'Two distinct, impressed lines or grooves, parallel to the dorsal margin, extend from the beaks to the anterior end; above the second there is a broad, nearly flat, dorsal area; below it the valve is very convex and the surface is cut by from thirteen to fifteen very conspicuous, unequal, and mequally distant, concentric grooves, beconing deeper and farther apart toward the ventral margin and scarcely visible on the posterior surface, which is concave and roughened by the lines of growth. Interor lustrous and very pearly. The two exterior, dorsal grooves show as two distinct ridges, and four of the deepest, exterior, concentric grooves appear as elevated lines, with broad, coneave interspaces. The edge of the valve along the entire length of the anterior dorsal margin is bent in at right angles and forms a gradually widening area. IIinge consists of three distinct, thin, oblique, unequal, divergent teeth. The first is a very oblique, long and narrow, angular ridge, having a shallow, elongated cartilage-pit in its posterior side. The second, directly under the beaks, is very much shorter, broader, more elevated, and less oblique, and the third is a very slightly elevated ridge extending from the beak to the posterior muscular scar. Scars rather distinct, paltial line not visible.

Macha Cumingiana (?) Dkr.
Macha Cumingiana Dunker, Proc. Zool. Soc. London, p. 425, 1861.
Macha striyillata (Linné), var. (?) Bush, Report U. S. Com. Fish and Fisheries, p. 86, for $1883,1885$.

Shell moderately large, thin, convex, long and narrow, with broadly
rounded ends and with the opposite margins nearly parallel. Beaks very small, incurved, situated near the anterior third; the dorsal margin in front of the heaks, straight, and behind them slightly ohlique. Surface somewhat lustrons, roughened by the irregular lines of growth and ent by numerons, fine, wavy, diagonal lines, the first one commencing just behind the beaks, and extending to the anterior ventral margin; near the posterior end of the shell, over the portion radiating from the beaks to the posterior ventral margin, they abruptly turn down in the opposite direction. In a specimen abont an inch long there are about thirty-six of these lines. Extending from the leaks obliquely backward across the shell there are two very faint, slightly raised, marrow, divergent rays. The hinge in the right valve consists of two mequal, prominent, divergent teeth. The first one, directly under the beak, is a three-sided, pointed tooth, projecting inward and upward like a hook; immediately back of this is a very narrow, gralually widening, sharp-edged, very oblique ridge, which forms the second tooth. Back of these, curving strongly inward and upward, is a short, high, angulated, tooth-like process, to the very concave exterior surface of which the ligament is attached. In the left valve, immediately under the beak, attached to the end of the ligamental process, there is a prominent, very thin, leaf-like tooth, curving strongly upward and backward.
In young specimens the lines of growth and the oblique markings show very distinctly on the interior, but in more mature examples these are concealed by a layer of smooth, very lustrous, pure white enamel. Pallial line distinct, with a broal, deep, very conspicuons simus.

Color, opaque huish white, under a thin, closely atherent, lustrons, light yellow epidermis.

Length of the largest perfect specimen, 30^{mm}; height, $13^{\text {mm }}$; thickness, about 4^{mm}.

Several valves of young specimens were foum in 15 to 17 fathoms. At station 2273 a fragment occurred showing the shell to be large and very thick when full grown.

Tellina lintea Conrad.
Journ. Acad. Nat. Sci. Philadelphia, vol. vii, p. 259, pl. 20, fig. 3, $18: 3$.
Common in 10 to 26 fathoms.
Semele lata C. B. Adams.
One valve (No. 40,600) agreeing perfectly with specimens labelled as this species in the P'eabody Musemm of Yale College, was fomm at station 2290 , in 10 lathoms.

Dosinia obovata Conrad.
Cytherea obovata, Conrad, Fossil. Tertiary Form. U. S., p. 14, pl. 8, lig. 4, 1838.
Dosinia obovata Conrad, Amer. Journ. Conch., vol. vi, p. 77, 1870-71.
Bush, Report U. S. Com. Fish and Fisheries, p. 87, for 1883, 1885.
Very abundant in 7 to 17 fathoms.

Chione alveata (Courad).
Venus alveata Conrad, Journ. Acad. Nat. Sci. Phila., vol. vi, p. 264, pl. 11, fig. 19, 1831 ; Fossils Tertiary Form. U. S., p. 9, pl. 5, fig. 2, 18:38. (? nom Say.)

Common in 10 to 48 fathoms.
Cardium pinnulatum Conrad.
Gould, Invert. Mass., p. 141, fig. 452, 1870.
Verrill, Invert. Auim. Vineyard S(l., p. 68.3, pl. 29, fig. 209, 1874
Common in 15 to 142 fathoms.

Cyprina Islandica (Linné) Lam.
Gould. Invert. Mass., p. 129, fig. 443, 1870.
Verrill, Invert. Anim. Vineyard Sd., p. 683, pl. 28, fig. 201, 1874.
A few valves occurred in 27 to 49 fathoms.

Astarte undata Gld.

Gould, Invert. Mass., p. 119, fig. 432, 1870.
Verrill, Invert. Anim. Vineyard Sd., p. 684, pl. 29, fig. 203, 1874.
Separate valves occurred in 27 to 48 fathoms and living specimens, in 43 to 49 fathoms.

Crassatella (Eriphyla) lunulata Conrad.
Gouldia mactracea Gould, Invert. Mass., p. 128, fig. 442, 1870.
Verrill, Invert. Anim. Vineyard Sil., p. 685, pl. 29, figs. 206, 207, 1874.
Crassatella (Eriphyla) lunulata Dall, Proc. U. S. Nat. Mus., vol. vi, p. 340, 1883.
Several valves occurred in 7 to 43 fathoms.
Crassatella, sp.
A single valve (No. 40,590) occurred at station 2307, in 43 fathoms. It measures 28^{mm} in length; 20^{mm} in height; 6^{mm} in thickness.

Venericardia granulata (Say.)
Cardita borealis Gould, Invert. Mass., p. 146, fig. 455, 1870.
Cyclocardia borealis Verrill, Invert. Anim. Vineyard Sd., p. 683, pl. 29, fig. 216, 1874.
Venericardia granulata Verrill, these Transactions, vol. vi, p. 258, 1884.
A few valves occurred in 27 to 49 fathoms.

Venericardia obliqua, sp. nov.
Shell small, moderately thick, compressed, somewhat triangular, very oblique, much produced anteriorly. Beaks small, acute, curved inward and very much forward. Surface crossed by from twelve to fourteen principal radiating ribs and two or three smaller ones on either side. The ribs are broad, flat, roughened by the lines of growth and separated by narrow, rather deep, mequal grooves. Interior smooth, very lustrons, semi-transparent, the external ribs showing distinctly throngh, and at their termination, forming broad crenulations in the margin. Hinge plate very broad, with a single prominent, slightly oblique, wedge shaped, bilobed tooth directly under the beak, in the right valve, with a deep triangular cavity on either side; and in the left valve two stout, divergent, wedged shape teeth, with a deep, triangular cavity between. Color dirty white with a broad, median, concentric band of yellow-brown.

Length of a medium sized specimen, $6{ }^{\mathrm{mm}}$; height, 6.5 ; thickness, 3^{mm}.

One living specimen and a few single valves, in 7 to 10 fathoms.
Chama congregata Conrad.
Fossils Tertiary Form. U. S., p. 32, pl. 17, fig. 2, 1838.
Separate valves occurred in 7 to 27 fathoms and living specimens, in 16 fathoms.

Lucina filosa Stimp.
Gould, lnvert. Mass., p. 98, fig. 404, 1870.
Verrill, Invert. Anim. Vineyard Sd., p. 686, pl. 29, fig. 212, 1874.
A number of valves occurred in 27 to 80 fathoms.
Lucina nassula Conrad.
Amer. Journ. Sci., vol. ii, p. 394, 1846.
Proc. Acad. Nat. Sci. Phil, vol. iii, p. 24, 1846.
Rather common in 7 to 48 fathoms.

Lucina trisulcata Conrad.

Amer. Journ. Sci., vol, xli, p. 346.
Fossils Tertiary Form. U. S., p. 71, pl. 40, fig. 5, 1838.
A single valve (No. 40,598) occurred at station 2290, in 10 fathoms.

Cryptodon obesus Verrill.

Invert. Aulm. Vineyard Sil., p. 393, pl. 29, fig. 214, 1874; these Transactions, vol. v, p. 569, 1882.
A few valves were fomm in 15 to 48 fathoms.

Diplodonta turgida Verrill and Smith.
Verrill, Amer. Journ. Sci., vol. xxii, p. 303, 1881 ; these Transactions, vol. v, p. 569, pl. 58 , fig. 42, 1882.
Common in 27 to 68 fathoms.
Montacuta bidentata (Montagu).
Verrill, these Transactions, vol. v, p. 571, 1882.
Single specimens were fomd in 16 and 48 fathoms.
Leda unca Gld.
Gould, Proc. Bostou Soc. Nat. Hist., vol. viii, p. 282, 1862.
Tryon, Amer. Mar. Conch., p. 183, 1873.
Verrill, these Transactions, vol. vi, p. 260, 1884.
Very abundant in 7 to 48 fathoms.
Pectunculus tricenarius Conrad.
Fossils Tertiary Form. U. S., p. 63, pl. 35, fig. 1, 1838.
One valve (No. 40,614), station 2296, in 27 fathoms.
Crenella glandula (Totten) Ad.
Gould, Invert. Mass., p. 194, fig. 492, 1870.
Verrill, Invert. Anim. Vineyard Sd., p. 695, pl. 31, fig. 233, 1874.
Single valves occurred in 16 and 48 fathoms.

Pecten Clintonius Say.

Pecten tenuicostatus Gould, Invert. Mass., p. 196, tig. 494, 1870.
Pecten Clintonius Verrill, these Transactions, vol. vi, p. 261, 1884.
Several specimens occurred in 16 to 49 fathoms.
Anomia aculeata Müll.
Gould, Invert. Mass., p. 204. fig. 498, 1870.
Verrill, Invert. Anim. Vineyard Sa., p. 697, pl. 32, figs. 239, 240, $240 \mu, 1874$.
Several specimens occured in 16 to 142 fathoms.

List of species found between 40 and 50 fathoms.

GASTROPODA.

Marginella borealis V. Volutella lachrimula Gld. n. Sipho pygтсеия (Gld.) V. n. Anach is Haliceeti (Jeff.) V. n. Astyris zonalis (Lins.) V. Lamellaria pellucida V .
Trans. Conn. Acad., Vol. VI.

LAMELLIBRANCHIATA.

Saxicava arctica (Linné) Desh.
n. Thracia Comadi Couth.

Asturte castanea Say.
n. Astarte crenata Gray.

Ledu ucuta (Conrad).
n. Nuculu delphinodonta Migh.

June, 1885.

GASTROPODA-continued.
n. Crucibulum striatum (Say) H. and A. Ad.
n. Cingula carinata Migh.
n. Aclis temuis V.

Ethalia maltistriata V.
Calliostoma Bairdii V. \& S.
Cocculina reticulata V .
n. Eulimella Smithii V.

LAMELLIBRANCHIATA-cont.

n. Modiolaria nigre (Gray) Lovén. n. Modiolaria corrugate (Stimp.) Mörch.
Crenella decussata (Mont.) Macg. Amussium, sp) nov.

EXPLANATION OF PLATE XLV.

Figure 1.-Mangilie oxytata, sp. nov. (p. 460), $\times 10$.
Figure 2.-Mangilia psila, sp. nov. (p. 455), $\times 5$.
Figure 3.-Mangilia melanitica Dall., var. oxia, nov. (p. 459), $\times 10$.
Figure $3 a$.-The same. Nuclear whorls, $\times 30$.
Figure 4.-Mangilia ephamilla, sp. nov. (p. 457), $\times 5$.
Figure \pm. -The same. Nuclear whorls, $\times 25$.
Figure 5.-*Mangilia (?) glypta, sp. nov. (p. 46 I), $\times 10$.
Figure 5a.-The same. Nuclear whorls, $\times 15$.
Figure 6. -Triforis turris-thome (D'Orb.) Dall (p. 463), $\times 10$.
Figure 7.-Skenea trilix, sp. nov. (p. 464), $\times 10$.
Figure 7a.-The same. View of the base, $\times 10$.
Figure 8.-Scalcria teres, sp. nov. (p. 465), $\times 6$.
Figure 9.-Odostomia engonia, var. teres, nov. (p. 467), $\times 6$.
Figure 10.-Niso cegleës, sp. nov. (p. 465), $\times 5$.
Figure 10a.-The same. Nuclear whorls, $\times 30$.
Figure 11.- Volvula minuta, sp. nov. (p. 469), $\times 20$.
Figure 12.-Volvula oxytata, sp. nov. (p. 468), $\times 10$.
Figure 13.-Bulla Candei D'Orb. (p. 468), $\times 10$.
Figure 14.-Cylichna biplicata (Lea) (p. 467), $\times 10$.
Figure 15.-Cylichna ccelata, sp. nov. (p. 468), $\times 6$. The lines denoting the seulpture are much too heavy.
Figure 16.-Philine Sagra (D'Orb). (p. 467), $\times 10$.
Figure 1 G α.-The same. To show sculpture, $\times 50$.
Figure 17.-Actoon puncto-striatus (Adams) Stimp. (p. 467), $\times 10$.
Figure 18.-Dentalium leptum, sp. nov. (p. 470), $\times 2 \frac{1}{2}$.
Figure 18a.-The same. Dorsal view of posterior end to show noteh, $\times 10$.
Figure 19.-Cudulus Carolinensis, sp. nov. (p. 471), $\times 8$.
Figure 20.-Cudulus incisus, sp. nov. (p. 471), $\times 4$.
Figure 21.-Necera costata, sp. nov. (p. 472), $\times 10$.
Figures 2, $3 a, 4 a, 5 a, 8,9,15,16 a, 20$ aro canera-lucidat drawings by the author; the others are drawn by Mr. J. H. Emerton, from nature.

[^34]
Nit.-Nef England Lycoside. By J. II. Emerton.

Tue Lycoside have the abdomen and usually the cephalothorax considerably longer than broad and the legs long, the fonrth pair longest, with long movable spines. The feet have three claws, the lateral ones long with numerous teeth, and the middle one short without teeth or with only one or two. The tarsi are sometimes thickly covered with hairs concealing the claws, but there are no toothed hairs under the claws as in the spiders that live in webs.

The eyes are in three rows. The front row consists of four small eyes nearly of the same size, the second row of two large eyes on the front of the head and the third row of two eyes a little smaller than the last, a little farther apart and farther back on the head.

The body is hairy all over and a large part of the markings are formed by colored hairs and change considerably when the spider is wet. The markings consist usually of three longitudinal light lines on the cephalothorax, different parts of which are obscured in different species, and a middle stripe of various shapes on the abdomen.

The palpi of the males are comparatively simple. The patella and tibia are but little modified except in Dolomedes. The tarsus is long and pointed. The tube of the palpal organ is usually short and lies across the middle of the bulb. On the middle or base of the bulb is a large process, the shape of which distinguishes many species. The external part of the epigynum consists usually of a middle lobe widened at the end and hard side lobes.

The Lycosida live on the ground, running after their prey and making no cobwebs. Sereral species make holes in the gromid, which they line with silk and use for shelter but not as traps.

The females carry the cocoon attached to the spinnerets and the yomg monnt on the female's abdomen and are carried for a time after leaving the cocoon.

Dolomedes and Ocyale carry the cocoon in their jaws and spin a large irregular web in bnshes for the use of the young.

Many of the species of Lycoside are very difficult to distinguish, and I have been unable to identify many of them with published deseriptions. I have compared mine with a large collection of European Lycoside and find very few species common to both comutries. The following papers contain descriptions of American Lycosidie.
E. Keyserling. Americanische Citigralm in Verhaudlungen der zool. botan. Gesellsch., Wien, 1876.

Geo. Marx. American Naturalist, vol. xv, May, 1881. On some new tube-constructing spiders.
S. H. Scudder. Psyche. Vol. ii, page 2, 1877. Lycosa arenicola.
T. Thorell. Notice of some spiders from Labralor. Proc. Boston Soc. Nat. Hist., vol. xvii, 1875.
N. M. Hentz. Araneides of the U. S. Boston Journal of Nat. Hist., vols. iv and v .

Mary Treat: Harper's Magazine, April and May, 1880.
H. C. McCook. Mabits of Lycosa nidifex, Proc. Phil. Acad. Nat. Sci., June, 1883.

In the classification of this family I have followed the arrange ment and names used by Simon in Arachnides de France, except that I have included Oxyopes, as was done by older writers. The family includes three sub-families, Lycosinæ, including Lycosa, Pirata, Pardosa and Aulonia; Dolomedina, including Dolomedes and Ocyale; Oxyopinæ, including Oxyopes.

Lycosa Latr.

Tarentula Thorell; Keyserling, Americanische Citigradæ, zool. botan. Ges., Wien, 1876.

Lycosa Simon, including Trochosa and Arctosa Koch.
This genus includes the largest spiders found in the Northern States, and most of the species are of large size and covered with hair. The legs are stout and thickly covered with hairs on the tarsi. The front row of eyes is nearly straight and as long as the second row or longer, the middle pair usually a little larger than the others. The second eyes are the largest and abont their diameter apart. The dorsal eyes are smaller and farther apart. The spinnerets are sloort, the hinder pair no longer than the anterior. Several species dig deep holes or make slallow nests under stones, where they hide while molting or carrying their young.

Lycosa nidicola, new.

Plate XLVI, figures $1,1 a, 1 b, 1 c, 1 d$.
Large female, 18^{mm} long. Cephalothorax, 9^{mm} long, 7^{mm} wide; 1st $\mathrm{leg}, 22^{\mathrm{mm}}$; 4th leg, 28^{mm}.

Color yellowish brown. The cephalothorax has a light middte line, narrow between the eyes and a little wider behind, with a fine dark
line along the dorsal groove. On each side of the thorax, near the edge, is a light line about as wide as the median one. The legs are yellowish brown, without rings, and darker or lighter according to the age of the spider. On the front of the abdomen is a middle stripe, darkest at the edges, which tapers to a point about the middle of the back. On each side of this are light stripes, which unite and become a narrow middle stripe on the hinder part of the abdomen. At the sides of the middle stripe are slightly darker and lighter oblique lines. The under side of the abdomen has irregular dark spots on a light ground, sometimes arranged in oblique lines at the sides and two or three longitudinal lines in the middle. The male is abont half as large as the temale and similarly marked. The tarsus of the mate palpus is long, about twice the length of the palpal organ and has several straight spines at the end. The palpal organ has a large barbed process across the base below the tube; above the tube is a thin sharp process about the same length and at its base a shorter one. The epigynum is about as wide as long and shaped like the letter T .

This is one of the most common species. It is oftenest found under stones where the female makes a hollow in the ground lined thinly with silk in which she stands with her cocoon of eggs early in the summer.

Massachusetts; Providence, R. I. ; New Haven and Noank, Conn. ; Indianapolis, Indiana.

Lycosa pratensis, new.
Plate XLVI, figures $4,4 a, 4 b$.
Length, 10^{mm}. Cephalothorax, $5^{\mathrm{mm}} \mathrm{long}, 3^{\mathrm{mm}}$ wide.
The colors are dark and light yellowish brown, browner than L. nidicola, which species it much resembles. The middle of the cephalothorax is light, broken by faint grayish stripes. Behind the middle the light area narrows and extends back to the end of the thorax. The abdomen is grayish, marked by two rows of light spots, indistinctly connected in pairs by cross lines. When wet the markings appear more complicated, as in the figure. On the front of the abdomen is the usual light stripe with dark edges over the dorsal vessel.

The front row of eyes is hardly longer than the second row, which distinguishes this species from polita.

The epigynum is shaped like that of lineata, but is shorter and wider. The palpal organ has the processes which support the tube, wider and more curved than in lineata.

This is the most common species under stones and under leaves in winter. Eastern Mass. ; Mt. Tom, Mass.; New Haven, Comn. ; Mt. Washington, N. II.

Lycosa polita, new.
Plate XLVi, flgures $2,2 a, 2 b, 2 c$.
Female, 12^{mm} long. Cephalothorax, $5^{\frac{1}{2} \mathrm{~mm}}$ long, 4^{mm} wide; 1st leg, 11^{mm}; 4th leg, 13^{mm}.
This is a small, short-legged species, like the last. The cephalothorax is reldish brown, dark at the sides and light in the middle, the two colors spreading into each other by several irregular notches around the dorsal groove. The hairs of the cephalothorax are very short and the whole surface looks as if polished. The legs are colored like the cephalothorax but have longer hairs and dark spines. The abdomen is light yellowish, with dark gray or black markings, resembling those of Tegenaria. On the front end is a light middle patch partly divided into three, and behind this are five or six herringbone markings broken by irregular light spots. Under the abdomen is a dark middle line, which widens at the ends around the epigynum and the spimerets. At the sides of this line and in front the abdomen is yellowish white, except irregular dark gray lines, which extend down the sides from above. The sternum and under sides of the legs are dark like the back of the thorax.

Another variety has dark markings on the cephalothorax and legs. The legs are marked with broken dark rings, two or three on each joint. The head and middle of the thorax are light, with some faint dark spots. On each side of this light area are two irregular dark bands not extending to the edge of the cephalothorax, which is marked by broken spots of light and dark.

The front row of eyes is much wider than the second row.
The epigynum is short and wide and has a peculiar shape characteristic of this species, see fig. $2 c$.

Eastern Mass. ; Albany, N. Y. ; New Haven, Comn. ; mider stones in summer and under leaves in winter. Eggs in Jume and July.

Lycosa frondicola, new.
Plate XLVI, figures $3,3 a, 3 b$.
Female, 14^{mm} long. Cephalothorax, 7^{mm} long, 5^{mm} wide; a little smaller than lineata.

The colors are gray and brown, like dead leaves among which it lives. The cephalothorax is dark brown at the sides and has a wide gray stripe in the middle.

The abdomen is similarly marked with a wide gray band in the middle and dark brown at the sides. In the gray band are some faint darker markings and an indistinet middle line in front tapering to a point near the middle of the back. The legs are dark gray. 'The sternum is dark gray. The under side of the abdomen has a wide dark stripe in the middle with irregular edges.

The epigynum is as wide as long. The middle lobe is very narrow in front and widens suddenly at the end into a shape like the letter 'T.

Lycosa pictilis, new.
Plate XLVI, figures 5, $5 a, 5 b$.
13^{mm} long. Cephalothorax, 5.5^{mm} long, 4^{mm} wide.
The cephalothorax is brown at the sides and has a wide middle stripe from between the eyes to the abdomen. Just back of the eyes the stripe widens, forming a square figure with corners pointing toward the sides. The back of the abdomen has in front two orangecolored spots. Following these is a row on each side of white spots surrounded by black, and between them a middle row of light angular markings. The legs are marked with alternate light and dark brown rings. The dark rings do not extend around the under side of the legs.

The epigynum is small. The middle lobe is widened and rounded at the end. The tube of the male palpus is short and partly concealed by the basal process, which extends across the tarsus and curves backward at the end.

This very distinct species is abundant among the moss and low shrubs on the upper part of Mt. Washington, N. H., and the neighboring mountains.

Lycosa kochii Keyserling, Verhandlungen zool. botan. Gesells., Wien, 1877. Plate XLVI, figures $6,6 a, 6 b, 6 c$.
Length of female 14^{mm}. Cephalothorax 6^{mm} long, 4.5^{mm} wide. The cephalothorax is dark brown at the sides and light brown or grayish in the middle. The middle of the abdomen is grayish brown with black muscular spots and bordered at the sides with darker brown, which forms two almost black spots on the front corners of the abdomen. The legs are light gray at the base and darker toward the tips. Beneath the color is lighter than on the back.

The colors and markings of the back are nearly the same as those of a smaller and shorter-legged species L. frondicola, but it may be easily distinguished by the epigynum, and by the light color of the under side of the body.

A soft and dark-colored specimen, probably lately molted, has the rings on the legs and all the dark markings more distinct and the epigymm smoother and less shrunken than usual, with the front part of the middle bobe nearly straight and with parallel edges not contracted in the middle as in most specimens.

The epigynum is very different from those of the related species. The anterior pit is single and the middle lobe is narrow in front and widened behind into a triangular and thickened end.

The palpal organ has the barbed process across the base of the bulb rather small and black. The tube is long and curved around the end of the hollow of the tarsus. At its base is a hard process extending across the bulb parallel to the barbed appendage. A thin process extends around parallel with the tube to its end.

This species lives in woods running among the dead leaves, which it much resembles in color. It matures in spring and carries its cocoons in May and June.

New Haven, Comm. ; Boston, Mass.
Lycosa carolinensis Hentz.
Plate XLVif, figures $1,1 a, 1 b$.
A large female is 30^{mm} long. Cephalothorax, 13^{mm} long, 10^{mm} wide; 1st leg, $35^{\mathrm{mm}}, 4 \mathrm{th} \log , 48^{\mathrm{mm}}$.

The male is more slender. One measures 18^{mm} long. Cephalothorax, $10^{\mathrm{mm}} \mathrm{long}, 7 \cdot 5^{\mathrm{mm}}$ wide; 1 st leg, 33^{mm}, 4 th leg, 37^{mm}.

The whole body and legs are mouse color above, light in mates and darker in females. The joints of the legs are darker towards the tips and the spines are black. The abdomen is indistinctly marked above. The markings of the moder side are much brighter. The under side of the abdomen, stermm and coxie are deep black, the femora light monse color with a black ring at the end. The tibis are gray in the middle and black at the ends. The mandibles are black with orange hairs on the front. All these markings are much less distinct in the female than male.

The whole body is thickly covered with short hair. The tarsi are very hairy, especially on the under side, covering up the claws except the tips.

Half-grown females in Sept, at New Haven, rumning in dry pastures, are very brighty marked, nearly black on the back of the abdomen, with the segments distinct.

This species digs a hole six or eight inches deep, but is often found muler stones or moming in fields and oceasionally in honses all over

New England. The eggs are laid in July. The young after leaving the cocoon gather on the abdomen of the female which then looks as large as it monse.

The palpal organ is smatl for so large a spider. The tube and the supporting appendage areshort and thin. The hasal process is short and black, slightly forked at the end. The epigymm resembles that of mutensis and nidifiex.

Lycosa vulpina, nerw.
Plite NLTHI, figure 2.
A large female measures $23^{m m}$ long. Cephalothorax, $12^{m n}$ long, $9^{\text {mm }}$ vide; 1st leg, $31^{\text {mm }}$; tilı legs, $36^{1 \mathrm{~mm}}$.

The general color, in alcohol, is dark hrown, with light gray or white markings. The colors are all probably lighter in life. The cephaluthorax has a narrow light line in the middle, widest behind, and wider and less distinct lines at the sides. The abdomen is indistinctly figured with spots of dark brown on a lighter gromed, or the markings run together into a nearly uniform dark brown. 'The legs are dark with light rings which are wider and more distinct on the immer joints and absent on the tarsi and metatarsi. The stermm, coxie and maxilie are all dark brown. The epigymm is shorter than in colrolinensis and the end thicker.

This species is about as large as L. corolinensis and has a general resemblance to that species. It is casily distinguished by the rings on the legs, the less distinct black markings on the mader side, and the shape of the epigyonm.

Mt. 'Tom, Mass;; New Jersey, McCook.
Lycosa nidifex Marx, American Naturalist, May, 1881
Lycosa arenicola Scudder, Psyche, vol. ii, page 2, 1877.

$$
\text { Plate NLVil, figures } 4,4 \pi, 4 b \text {. }
$$

Length of female, 21^{mm}. Cephalothorax, $10^{\text {mm }}$ long, $7^{\text {mm }}$ wite; 1st leg, 22^{mm}; 4th leg, 25^{mm}.

The cephalothorax is dark gray with a wide light band in the midNe. The abdomen is light gray with a dark band in the middle, which follows the shape of the lorsal vessel in front and incloses in the hinder half 3 or 4 pairs of white spots. The legs increase in thickness and the color becomes darker from the fourth to the first pair. The first legs are dark brown covered with gray hairs, the hind legs light gray or yellowish with black spines. 'The first and second legs are black beneath except the tarsi. The sternmm is dark
trians. Conn. Acad., Vol. Vi.
June, 1885.
est at the front emb. The madibles are covered with light gray hairs on the front.
'Two old femakes taken at New Haven, Comm., ()et. fth, had all the colors fanded to nearly miform dark brown, the dark parts lighter and the light parts farker than in yomger individuals and the hairs on the legs shorter.

The epigynum is T'-shaped, with the eross piece short and thick.
The males are a little smaller than the femates. The palpal orgams resemble those of lineutu, but the tube is shorter and the terminal process which smports it is short and thick and tapers to a narrow joint.
'This species makes holes six inches to a foot deep, lined with silk and with a ring of rubbish fastened together with silk around the month. The habits are deseribed by Sembler in P'syche, vol. ii, p. 2; George Mare in Am. Naturalist, May, 1881 ; and H. C. McCook in Proc. Phil. Acad. Nat. Sci., Jme, 1883.

Almany, N. Y.; New Maven, Comn.; Cape Cod, Martha's Vineyard and Nantucket, Mass.; Long Islame, usually in sandy fields.

Lycosa cinerea F .

Plath NLVII, figuties $3,3 \not, 3 \%$.

Male, $13^{m m}$ long ; Lst legg, $18^{m m}$; thlu leg, $23^{\text {man }}$; palpi, smm.
The eephalothorax is yellowish white with indistinct rallating markings about the dorsal groove. The space between the eyes is bhack. The legs are whitish with indistinet brownish rings and batek spines. The ends of the legs and palpi are darker. 'The abolomen is white with irregratergray markings. The mandibles are dark brown. The under side of the whole borly is yellowish white. The whole body is covered with long white or gray hairs.

Themale palpi are long. 'The tarsus is slender and pointed and twice as long as the palpal orgen, which is small and closely folded together.

On sandy lichls and heathes, Eastern Massachusetts; Martha's Vineyard; New Hawen, Comm; Imliampolis, ludiana. It has several times been fomst on beaches where it apeared to have been eovered liy the tide. It is also a common spider in Emope.

Lycosa nigroventris, new.

 dark brown. In the middle of the eqphatothoran is a straght graty
stripe as wide as the eye-area. The edges of the thorax are also light. Between these the sides of the eephatothorax are dark brown, almost black near the edges of the middle stripe.

The abdomen is light gray in the middle. At the sides in front are two dark spots, darkest in front, extending lack half the length of the abdomen and between them are two small dark spots near the musenlar spots on the first segment. The hinder half of the abodomen is marked by scolloped transverse dark lines. The legs are covered with gray hairs and scattered dark spines.

The sternum is dark brown and the coxae nearly as dark. In the midlle of the under side of the aholomen is a black marking more than half as wide as the body extending from the spiracles to the spimerets. The front part of the ablomen is brown like the coxe. The mandibles are dark brown with a few light hairs on the front near the base. The palpi are a little longer than the first femm and light gray, except the tarsus which is a little darker. The palpal organ is moderately large, the tube and its support much longer than in carolinensis, but proportionally shorter than in protensis, ete.

Near Chehaceo pond, Essex, Mass., Aug., is7t.

Lycosa communis, new.

Length, 10^{mm}. Cephalothorax, $5^{\mathrm{mm}} \operatorname{long}, 4^{\mathrm{mm}}$ wide; 1st leg, 14^{mm}; 4th leg, 17^{mm}.

The colors ant markings are very variable in this species. The most distinctly marked individuals are very dark brown or black with light gray and yellow markings and lark rings on the legs. The lighter specimens have the legs light gray and all the darker parts of the body of the same color. In the dark variety the ceplalothorax is dark brown with a marrow light gray stripe in the midde and on eachside. Themiddle stripe divides into three in front, the middle part extending forward hetween the eyes to the front of the head, while the side liranches end in front of the hinder eyes. 'The abdomen is dark brown with two bright yellow stripes on the front part that mite into one behind the middle and are indistinctly divided into segments by grayish lines. Along the sites of the yellow lines are several pairs of irregnlar hack spots. The legs are ringed with gray and dark brown. The under side of the abomen is gray, with a black stripe each side, which mite in front of the spinncrets and sometimes are comected in front by a back transwerse line be-
hind the epigynm. The sternmm is dark brown with sometimes a light mark in the middle. In some light colored individuals the space between the two yellow bands on the abdomen is much lighter, so that it forms with them a wide yellowish middle stripe. Fig. 6%.

This is a slemder species with long legs. The front row of eyes is shorter than the second row and a little curved upward. The eyes of the sceond row tre about their diameter apart. The epigymm is T-shaped. There are two pits near together in front. The anterior part of the epigynum is widened in the middle. The cross-piece is scolloped at the ends. The male palpi are long and slender. The palpal organ has a thick process at the hase with a large tooth. The terminal process which seems to support the tube is short and curver mpwards at the end. Near its base is a small hook. The tarsus is about twice as long as the palpal organ and not very sharp at the end, where there are several thick spines.

They rim in grass in open fields or hide under stones, especially when abont to molt or to lay eggs. When surprised in open gromen they sometimes lie flat and appear dead.

Eastem Mass.; Providence, R. I.; New Ilaven, Comn.

Lycosa punctulata Hentz.

Plate XLiVIII, figures $1,1 a, 1 b$.
The largest female measures $16 \cdot 5 \mathrm{~mm}$ long. Cephalothorax, $7 \cdot 5^{\mathrm{mm}}$ long, $5.5^{\mathrm{mm}} ; 1$ st $\log , 19^{\mathrm{mm}} ; 4$ th legg, 22^{mmm}.

The cephalothorax is whitish with two distinct dark hown stripes. The abdomen has a dark brown mildle band with a narrow white stripe on each side, beyond which the sides of the abdomen are hownish, darkest towards the front end. The muder side of the abdomen is light or with some irregular dark patches and has several back spots itregularly arranged and differing in si\%e and number in different individuals. The legs are without rings lout the ends of the joints are darker than the rest. The eephalothorax and aldomen are marrower than in most species.

The epigymm is narrow and conver in the middle, the middle lobe only slightly elevated and a little widened in front. At the himder ond is a short tramsverse piece.

Woothridge, Comn.; Sherborn, Mass., liom A. L. Baleock; Providence, R. I.; Indianapolis, Indiana. Hent\%'s specimens were from Pemsylvania amd Alahama.

Lycosa scutulata Hentz.
Plate Xliftil, figures 2, 2 μ.
Femate, 16^{mm} long. Cephalothorax, $7 \cdot 5^{\mathrm{mm}}$ long, $5 \cdot 5^{\text {mum }}$ wide; ist leg, 22^{mm}; 4th leg, 28^{mm}.

This species resembles pmotulutr, but the legs are proportionately longer. The eephalothorax has two dark longiturlinal stripes along the midille and finer dark lines near the edges. The abrlomen has a dark middle stripe broken by two notches near the front third and inchnding three or four pairs of light spots in the hinder half. The under side is light withont markings. The legs are light with the ends of the joints darker.

The epigynmm is shorter and wider than in monetulete and less conver. The transperse end of the middle lobe is wider.

New Haven, Comn., under stones along roads. I female fommd sept. 15 th, was in a shallow hole lined with silk, with young on her back.

Lycosa ocreata Hentz, Boston Journal of Nat. Hist., vol. iv.
Probably Lycosa ocreatu Keyserling, zool, botan. Gesells., Wien, 1876. Plate XLViII, figures $6,6 a, 9 b$.
Males, 6 to 7^{mm} long; 1st leg, 10 to 12^{mm}. Small female, $8^{\text {mm }}$ long. Cephalothorax, 3.5^{mm}.

The cephalothorax has a light gray stripe in the midlle from the second row of eyes backward. At the sides the cephalothorax is dark brown. The abdomen is dark brown at the sides and has a light grayish figure in the middle indistinetly divided into segments on the hinder half. Fig. 6. The legs are yellowish, indistinetly ringed with gray on the femora. The hairs are long all over the horly and the spines on the legs are also long. In the male the cephalothorax is wide behind and the legs are longer and stouter. The tibite of the front legs are thickly covered with dark brown hairs which stand out. at right angles to the leg and make it appear thickenet. The male palpi are thickenel toward the end. The tibia is as wide as long and the patella is also short and thick. The palpal organ has a long thin process at the end which lies acrose the tarsus and makes it appear twisterl. The front row of eyes is shorter than the second row and the eyes are small with the lateral not much larger than the midlle. The eyes of the seeonil row are large and about their diameter apart.

New Haven, ('om., common in open woods among dead leaves. Adilt about Ime 1st.

Pirata Snd.

The front row of eyes mearly straight. The second eyes very large furd not more than their diameter apart, usually nearer together. The hinder eyes are farther forward and wider apart than in Lyensa. The himder spinnerets are twice as long as the front pair. The thorax is usually marked hy a median light stripe, which spreads into three toward the eyes. The dark lateral areas are more or less broken by radiating light lines.

Pirata piraticus Clerck.
Plate XLVIII, figures $7,7 a, 7 b, 7 c, 7 d$.
Length of female, 7.5^{mm}; cephalothorax, $3.5^{\mathrm{mm}} \mathrm{long}, 2 \cdot 5^{\mathrm{mm}}$ wide.
Yellow, with black or gray markings. The cephalothorax has a light narrow line in the mildle and one on each side a short distance from the edge. In the midtle of the front of the abdomen is a blackedged stripe which tapers backward to a point or fine line beyond the middle. On the sides of this are light stripes which mute into a single middle line, behind and ontside of these a row of dark marks which extend down the sides, becoming gradually narrower. The legs and the under side of the body are light yellow. The mandibles are brown and the eyes are surrounded hy black. The front row of eyes is of the same length as the second row, and the fonr eyes are nearly of the same size. The second row of eyes are large and about their diameter apart.

The epigynmm has a small triangular opening behind, within which two round holes are visible; in front of the opening is a round swefling over the epigymm.

The males are a little smaller and brighter than the lemales.
The midille process of the palpal organ is large, wide at the base and ends in front in a sharp hook.

Salem, Massachusetts; New llaven, ('omm; in wet fiehls and under leaves in winter.

Pirata insularis, new.
Plate Xidili, fidures $8,8 a$.
length of fomate, $8^{m m}$; cephatothorax, $3 \cdot 3^{\mathrm{mm}} \mathrm{long} ; 4$ th leg, 13^{mm}.
Colors dirty white and igray, somewhat like Tegenotin medicimuls. In the midille of the eephatothorax is a light line from the eyes to the dorsal grone 'Two light lines extend from the hind eyes backwatl and mite into one behind the dorsal groove. At the sides are two other light lines. The athomen has a light middle stripe on the
front half and the rest is nearly black with seattered small white spots. The femora are marked with three or four light and dark rings, and rings show indistinctly on the other joints in some speeimens.

The stermm is dark with three inlistinct light lines. The abolomen is dark beneath with many small hight epots in obligue rows.

The enigymm is dark brown; divided at the edge into two lobes. Long Lake, Adirondack Momtains, N. Y.

Pirata montanus, new.

Plate XLVIII, fiture 9.
Length, 5^{mm}; th leg, 10^{mm}. The legs : we yellowisho white, with very faint grayish rings near the ends of the joints and dark spines. The stemmon and coxa are white. The eephatothorax is gray at the sides and has a wide light stripe in the middle, which is as wide as the head in front and tapers to half as wide behin!. In the front half of this stripe are two dark lines, widest near the eyes and converging behind to the dorsal groove. 'The region around the eyes is black and the front of the head and mandibles dark. The sternmm, front half of the abdomen and spimerets are white.

The back of the abdomen is brown, with an indistinct row of small white spots each side. On the front end is a middle stripe with dark edges which tapers to a point near the middle of the abdomen. On the hinder segments are several dark and light transverse lines not forming any distinct figure.

The front row of eyes is considerably shorter than the secoud row, extending from the middle of one second eye to the middle of the other.

The hinder spinnerets are twice as long as the firont pair and extend behind the abdomen.

The epigynmm appeas very simple externally, the spermathece showing through the skin just in front of the edge of the fold in which appears to be the opening.

All the specimens are females, one from the White Monntains in July, with eggs, and two from Long Lake in the Adirondack Monntains, N. Y.

Pirata minutus, uew.
Plate XLVili, flgules $10,10 c t, 10 \%, 10 c$.
Length of male, $3^{\text {man }}$. Cephatothorax gray, with a light line near the edge of the thorax and several radiating lines. Legs white or light yellow. The femora of the front legs darker and the rest of the leg
lighter than the others. The abotomen is gray, marked by bright white spots. In the middle of the himler half is a row of short transverse white lines, and at the sides of these two rows of white dots. At the sides of the front of the abdomen are several oblique white lines. The upper spimerets are twice as long as the lower. 'The upper eyes are large and promincot and smromiled by black.

The male patpi are light colored and not much thickence. The patpal organ has small appendages which are all near the onter end of the tarsms. 'The middle process is a large hook with a smaller and shorter one turned in the opposite direction at its base.

Sakem and Rosbury, Mass.; Meriden, Com.

Pardosa C. Kuch, Simou.

Lycosa Thorell = Lycusa Keyserliug, Americauische Citigradix, zool.-botan, Ges.. Wіен, 1876.

$$
\text { Phate ILIA, figures } 1,1 a, 1 b, 1 c, 1 d \text {. }
$$

Head high and the second eyes large and as far apart ats their diameter, of farther. 'The front row of eyes is straight or a little curverl "1] ward and shorter than the second row. The dorsal eyes are a little farther apat and nearly as from the second eyes as from each wher. The mamblibes are small and weak compared with those of Lyeosa. The legs are long and slender, less hairy than in Lyeosa, but with very long spines, which lie Hat against the skin when at rest and are turned ont when the spider is active. The spimerets are short and the posterior pair are a little the longest. The species are all small and brightly marked and live among grass, especially in open, wet grommb, making no nests.

Pardosa lapidicina, new.

Plate XLVilf, figithes $5,5 c, 5 b, 5 c$.

The general color is black or dark gray, covered with long hairs. The markings show plainer when wet withaleohol. The eephatothorax has an irregular light pateh aromme the dorsal groove and small light spots aromm the edges. 'The legs are marked with light and dark rings, the width of the light rings inereasing and the dark deereasimg towad the tips. The back of the abdoanen is marked with irregular rows of light spots, somewhat as in L. cinerce. 'The mader side has some irregular light spots, sometimes a light spot in the midnle with a blate ring aromm it. Others have the whole ablomen black.

The palpal organs resemble those of L. cinerer. The epigynum is small with a single pit in front.

This species lives among stones in the driest places, and runs with great speed.

Salem, Mass. ; Meriden, Conn.
Pardosa brunnea, new.
Plate NLVifi, figures $4,4 a, 4 b$.
Length of $9,8 \cdot 5^{\mathrm{mm}}$. Cephalothorax, 4^{mm} Iong, $3 \cdot 3^{\mathrm{mm}}$ wide.
Colors dark brown with light markings. The head between the eyes is very dark, almost black. The middle of the cephalothorax is light, except a dark line which extends back as far as the dorsal groove. There is a narrow light stripe on each side a short distance from the edge. The legs are dark brown with some irregular longitudinal light stripes, and lighter toward the ends, especially in males. The abdomen is dark brown, except a light pointed marking over the dorsal vessel and a row of irregular black spots each side. The sternum is brown, with sometimes an indistinct light line in the middle and on the edges. The nuter side of the abdomen has a light stripe in the middle, from the epigynum to the spinnerets. The sides are brown in irregular spots. The male palpus is short and stout. The tibia is a little thickened and covered with long hairs that make it look still thicker. The tarsus is nearly as wide as long, and the palpal organ is large and black. Fig. $4 a$. The epigynum has a peculiar shape, fig. 4h, and varies somewhat in different individnals in the shape of the middle lobe.

Mt. Washington; Dublin, N. M. ; Eastern Massachusetts; New Maven, Coun.

Pardosa albomaculata, new.

$$
\text { Plate XLVtit, figures } 3,3 a, 3 b \text {. }
$$

Female, 11^{mm} long. Cephatothorax, 5^{mm} long, 4^{mm} wide; 1st leg, $15^{\mathrm{mm}} ; 4$ th leg, 20^{mm}.

Color deep black, with spots of white hairs. On the abdomen are two rows of distinct spots, and there are less definite ones on the legs and around the thorax. The whole hody is covered with long hairs, and only when these are wet are the markings on the skin visible. There are light rings on the legs and indistinct light spots on the thorax as in the related species.

The middle ridge of theepigynum is narrow, only slightly widened

[^35]at the end. At the sides are prominent ridges over the openings. Fig. 3 a.

The male palpi are large and stout. The tibial joint is as wide as long. 'The tarsal joint is short and wide. The palpal organ is large and complicated and very different from that of the nearest species.

Bare rocks on the upper part of the White Mountains, rmming very rapidly and dodging under stones at slight alarm.

Pardosa pallida, new.
Plate XliX, figures $3,3 a, 3 b, 3 c, 3 d, 3 e$.
Length, 5^{mm}; 1st leg, $6^{\mathrm{mm}} ; 4$ th leg, 10^{mm}.
The general color is light yellow with brown markings. The cephalothorax is yellow with two brown stripes, which unite and become llack between the middle eyes. There is a fine black line near the edge of the thorax on each side. The abdomen has a light middle band not much widened in front, where it inclndes a light stripe with dark brown edges, which tapers to a point about the middle of the abdomen. The hinder part of the middle stripe is indistinctly divided into four or five segments. At the sides of the middle stripe the abdomen is dark brown or black in small irregular spots and becomes gradually lighter toward the sides. The sternum is light, with a black line or row of spots around each side and two similar lines near the middle uniting into one behind. On the under side of the abdomen are two black lines from the spiracles to the spinnerets. The legs are light yellow, with a few irregular black streaks, especially on the inner joints.

The ends of the male palpi are black and the front legs and head are a little darker in the male than in the female, but otherwise there is not much difference between them. The shape of the epigynum is characteristic of this species. Fig. 3c. The middle process of the palpal organ is very long and wide and curved obliquely across the bulb. Fig. $3 e$.

New Hampshire; Massachusetts; New Haven, Conn.
Pardosa bilineata, new.
Plate NLIX, fiqures $4,4 a, 4 b$.
This species resembles closely P. pallida, but is much larger, the markings of the muder side less distinct and the epigymum very different, being 'T-shaped and mneh shorter than in pallida.

The female is 7^{mm} long. 'The cephalothorax, $3 \cdot 5^{\mathrm{mm}}$; 4th leg, 12^{mm}. The markings of the back are similar to those of I. pullicla. The legs
are light yellow, a little brownish toward the end. The stermm is light with a dark edge and a row of dark spots on each side meeting behint. 'The under side of the abdomen is indistinctly marked with fonr longitudinal lines converging behind.

The epigynmm is of the common T -shape, about as wide as long. East Rock, New IIaven, Comn.

Pardosa albopatella, new.
Plate Xlid, figures $2,2 a, 2 b$.
Male, 4^{mm} long. Cephalothorax, $2 \cdot 5^{\mathrm{mm}} \mathrm{long}, 2^{\mathrm{mm}}$ wide. The cephatothorax has a light stripe along each side covered in life with white hairs which extend to the edge of the thorax and make the stripe appear wider than in alcohol. In the middle of the thorax is a light spot which tapers behind to a point near the hinder end of the thorax and fades in front into the dark markings of the head. The rest of the cephalothorax is black, blackest toward the front. The male palpi are black, except the patellæ, which are bright white. The legs are light at the ends with white and gray hairs and black spines. The femora are darker, the hinder ones ringed with gray, and the front pair entirely black. The abdomen is gray with an indistinct light stripe in the middle of the front part, extending back only half the length of the abdomen. The sternmm is black. The under side of the abdomen is gray with a black line in the middle and on each side.

The middle process of the palpal organ is long and curves obliquely across the bulb its whole width. The tarsus of the palpus is long and slender. Fig. $2 b$.

In the female the light markings are smaller and less distinct than in nigropulpis.

Ipswich and Roxbmy, Mass. New Haven, Conn. May and June.
Pardosa nigropalpis, new.
Plate XLIX, figures $1,1 a, 1 b, 1 c, 1 d$.
Males, 5^{mm}; females, 6^{mm} long; 4th leg of female, 12^{mm}.
Cephalothorax of male black with a light band in the middle from the posterior eyes to the abdomen. This band widens just behind the eyes and suddenly narrows again about the middle of the cephalothorax. It widens again around the dorsal groove and narrows behind. Around the edge of the thorax are narrow light stripes or rows of irregular spots.

A light band about as wide as that on the thorax continues back-
ward along the middle of the abdomen. It widens in front and tapers backward nearly to the middle, behind which it is broken up into a series of four or five transverse spots edged with deep black and including some fine black spots. Legs yellowish, ringed with gray on the femur and less distinctly on the patella and tibia. In a fresh young female the general color is gray. The gray band on the cephalothorax extends forward covering the area between the eyes to the front of the head. This part of the band is a little darker than the rest. The edges of the cephalothorax are a little lighter than the rest but the light markings only show when wet. The legs are plainly ringed with gray on all the joints and the palpi are light.

The sternum is black in the middle and light at the sides. The coxa are light and the under side of the legs lighter than the upper. The under side of the abdomen is sometimes entirely gray, or there is a middle lighter area with a dark stripe rumning back from the epigynum nearly to the spinnerets. The male palpi are black at the end and the other joints are darkened by scattered black hairs.

The mildle process of the male palpi is short and sharply bent toward the side and the small hook at its base is very small. Fig. 1c.

Massachusetts and Connecticut.
Pardosa montana, new.
Plate XLIA, figures 5, $5 a$.
ㅇ, 6^{mm} long; f, 5^{mm}. In alcohol, at least, the colors are duller and the markings less distinct than in the other species in both sexes. The legs are more distinctly ringed on the femur and tibia, all the legs nearly alike. The light markings on the middle of the thorax and abdomen are large like P. albopatellu, but not brightly colored. There is little difference in the markings between the sexes. The epigynum is wide with a small narrow middle lobe. The anterior pits are large and wide apart. The male palpi are long and the joints are not much thickened. The middle process of the patpal organ is short and stont, with the end curved backward into a short hook. Fig. 5.

Mt. Washington, N. H., June. Mt. 'Tom, Mass., April 4, 1878.
Aulonia C. Koch.
The head is high and wide. The middte and posterior eyes are very large, and seen from above form ahost a square covering the whole top of the head. 'The front row of eyes is much shorter than the second row and slightly curved upward, The second row are
less than their diameter apart. The posterior eyes are tumed ontward and backward. The hinder spinnerets are about t wice as long as the front pair, but when folded together are not eonspienous. The species are small and slender, as in Pardosa.

Aulonia aurantiaca, new.
Plate Nlix, figures 6, $6 a, 6 b$.
Female, 3^{mm} long; 4th leg, 5^{mm}. Male a little smaller. The abdomen is brownish orange-color with a yellow spot in the middle tapering to a row of smaller spots behind. The eephalothorax has a yellow spot behind, just under the front end of the abdomen, and a narrow bright yellow stripe on each side. The middle is yellowish without any definite stripe or spots. The rest of the cephalothorax is black. The legs of the female vary from dark brown on the front pair to light yellow on the hinder pair. In the male the legs are whiter with the femora of the first and second pairs black, or partly spotted with black. The male palpi are black, except the tips, which are partly white. The white parts turu yellowish in alcohol.

The front eyes are smaller and the whole row not much more than half as wide as the second row; it is slightly curved upward and the middle eyes are a little larger than the lateral.

The palpal organ is large and the tarsus wide and short. In the middle is a long appendage, thick and rounded at the front end and sharply pointed behind. Fig. $6 a$.

Eastern Massachusetts; New Haven, Comn.

> Ocyale Aud., in Sav.

The cephalothorax is a little more elongated than in Dolomedes, and the head more distinctly separated by grooves. The eyes differ but little in size, and the hinder pair are not much farther back than the second.

Ocyale undata.

Micrommate undata, serrata and carolinensis Hentz, Boston Journal of Nat. Hist., vol. v.

$$
\text { Plate XLiX, figures } 7,7 a \text {. }
$$

This species resembles Ocyale mirubilis of Europe, but the body is less narrowed behind and the eyes are more like Dolomedes.

The female is 13^{mm} long. Cephalothorax, 5^{mm} long, 5^{mm} wide; 1st, $2 d$, and 4 th legs, 25^{mm} long.

The cephalothorax and abdomen are flat and the cephalothorax is as wide behind as it is long. In old females the legs are reddish
brown without any rings or other markings. In the middle of the cephalothorax is a longitudinal stripe about a third its winth, of the same color as the legs. The sides of the cephalothorax are light yellow, darkest toward the edges. The brown middle stripe continnes along the abdomen with the edges a little irregular but with no distinct teeth or undulations. Young individuals have all the colors lighter and yellower, the legs more or less ringed and the middle stripe of the abdomen distinctly undulated. Along the edges of the middle stripe there is usually a fine white line which is sometimes broken up into a row of spots, as in Hentz's M. carolinensis. In very young spiders the abdominal stripe is distinctly serrated, as in Hentz's M. serruta, the stripe on the thorax divided into two and the whole body less flattened.

The male palpi are long. The tarsus is pointed but nearly as wide as long. The middle process of the palpal organ is flat and thin, spreading out over the greater part of the bulb. At one side it is narrowed into a fine point which supports the end of the long slender tube, the ends of both resting on a short process at the base of the bulb. On the under side of the end of the tibia is a wide flat process extending up to the palpal organ, and on the onter side is a long tooth sliglitly notched at the end.

From July to September the females may be found under large bunches of web four or five inches across, in grass or low bushes in meadows. The cocoon is placed in this bmeh of web, and the yomg after hatching scatter themselves throngh it.

Eastern Massachusetts; New Haven, Conn.

Dolomedes.

In this genus the cephalothorax is about as wide as long, and rounded on the back, with but little separation between the head and thorax. The head is wide and nearly straight in front. The front row of eyes is composed of four small ones as in Lycosa. The second row are larger, but not larger than those of the third row, which are twice as far apart and a little farther back. The legs are long, and the first, second and fourth, are nearly equal in length. The feet are thickly covered with fine hairs. The abdomen is a little flattened and a little pointed behind. 'The tibia of the male palpus has a large process on one sirle. They live near water on which they run casily. The female carries the cocoon in her mandibles until the young are ready to hatch, and then fastens it in a bush with many irregular threads, among which the young remain a short time after leaving the cocoon.

Dolomedes sexpunctatus Hentz, Boston Journal of Nat. Hist., vol. iv.
Plate NLIX, figures $8,8 a$.
Female, 13^{mm} long. Cephalothorax, $5 \cdot 5^{\mathrm{mm}} \mathrm{long}, 5^{\mathrm{mm}}$ wide. The cephalothorax is not as wide in proportion to its length as in the other species. The color is dark olive or gray and yellow. The cephalothorax is dark yellowish brown with a very bright white line on each side extending forward to the front of the mandibles. The abdomen is dark gray, darkest in the middle, with.two rows of small white spots. The legs and palpi are greenish yellow with dark spines. The under side is lighter yellow. On the sternum are six black spots, sometimes very distinct, in other individuals hardly visible.

This species lives near water, on which it rums easily. Eastern Massachusetts ; Albany, N. Y.; New Haven, Com. Though it is common, I have ouly found one adult female and no males.

Dolomedes tenebrosus Hentz.

Plate XLIX, figures $9,9 a, 9 b, 9 c$.
Length of female, 18^{mm}; 1st leg, $33^{\mathrm{mm}} ; 4 \mathrm{th} \mathrm{leg}, 37^{\mathrm{mm}}$; cephalothorax, $9^{\text {nm }} \operatorname{long}, 8^{\mathrm{mm}}$ wide.

Male, 16^{mm} long ; cephalothorax, $9^{\mathrm{mm}} \mathrm{long}, 8^{\mathrm{mm}}$ wide; 1st leg, 44^{mm}; 4 th $\mathrm{leg}, 48^{\mathrm{mm}}$.
'This is one of our largest spiders, some males spreading four inches. The colors are dark brown and light gray, turning darker and yellower in alcohol. The cephalothorax has a light stripe on each side. The abdomen is marked with five or six dark brown angular stripes across the hinder half. These are darkest around the edges and bordered by lighter lines. 'The legs are marked with dark and light rings, which are plainer in the male than female. The markings on the abdomen are also somewhat different in the male, being more united into a middle band bordered by lateral bright white or yellow ones. 'The femora of the fourth pair have near the end on the under side an oblique cluster of black spines on a slight elevation. The male palpi have the tibia widened at the end, and a large process on the outer side near the middle, consisting of a large hook with a smaller one at its base and above it. The tarsus is large and the palpal organ complicated with a long slender tube.

These spiders live on bushes near water. The female makes a large mass of web in which she places the cocoon of eggs, and in which the young live for some time after latching.

Massachusetts. New Haven, Conn.

Dolomedes fontanus, new.
Plate XLIX, figure 10.
This spider resembles closely D. tenebrosus, but is a little smaller. Length, 14^{mm}; longest leg, 36^{mm}. There are no tufts of bristles on the hind femora. The male palpi are much like those of tenebrosus, but the process on the tibia has two small hooks of nearly equal length. The alodominal markings and the indistinct rings on the legs are like those of the male tenebrosus.

One male. Dublin, N. H., near water.

Oxyopes Latr.

This genus is often placed in a separate family from the Lycosidx, on account of the great difference in the arrangement of the eyes caused by the lateral eyes of the front row being placed wide apart at the sides of the head and above the eyes of the second row. This places the eyes in four rows, the first of two sinall eyes near together, the second of two large eyes as in Lycosa, the third of two small eyes wide apart, and the fourth of two small eyes on the top of the head. The head is very high and wide on the lower edge. The abdomen is wide and pointed behind. The legs are very slender and tapering and have long spines.

Oxyopes scalaris Hentz, Boston Journal Nat. History, vol. v.
Plate XLIX, figures $11,11 a$.
6^{mm} long; cephalothorax, $2 \cdot 5^{\mathrm{mm}}$.
The eephalothorax is wide in front and as high as wide, the head narrowing a little upward toward the eyes. The ablomen is wide in the middle and pointed behind. The general color in alcohol is dark brown covered with gray and yellow hairs. The middle of the cephalothorax is light with irregular edges. The abdomen has a row of light spots in the middle and a less distinct row each sitc. The under side of the abdomen has a dark stripe in the middle, on each side of which is a bright yellow stripe. The legs are slender and tapering, with very long spines. They are marked with dark rings or spots at the end and middle of each joint.

The eyes are in four rows. The lower row consists of two very small eyes, about half way between the mandibles and the top of the head; the next, of two larger eyes, the largest of all, about their diameter apart; the third, of two small eyes twice as far apart as the second; and the fourth, of two eyes a little smaller than the second and a little farther apart, on the top of the head.

The mandibles are small and tapering and shorter than the height of the head. Naslna, N. H., ruming on a fence.

EXILLANATION OF PLATES.

Plate XLVI.

Figure 1.-Lycosa nidicola. Female.
Figure la.-The same. Male.
Figure 1b.-The same. Under side of abdomen of female.
Figure $1 c$.-The same. Palpus of male.
Figure 1d.-The same. Epigynum.
Figure 2.-Lycose prolita. Female, common variety of marking.
Figure $2 a$.-The same. Female, variety with brighter markings.
Figure 2b.-The same. Eyes.
Figure 2c.-The same. Epigymum.
Figure 3.-Lycosa frondicole. Femate.
Figure $3 u$.-The same. Female, under sude of abdonen.
Figure $3 b$.-The same. Epigynum.
Figure 4.-Lycosa pratensis. Female.
Figure $\mathrm{t} a$. -The saue. Epigyuum.
Figure 4b.-The same. Male palpus.
Figure 5.-Lycosa pictilis. Female.
Figure 5a.-The same. Male palpus.
Figure 5b.-The same. Epigynum.
Figure 6.-Lycosu kochii. Female.
Figure 6r.-The same. Epigynum.
Figure 6b.-The same. Male palpus.
Figure $6 c$.-The same. Maxillit of female.

Plate ILVII.

Figure 1.-Lycosa corolinensis, under side of female.
Figure lu.-The same. Epigyunm.
Figure 1b.-The same. Male palpus.
Figure 2.-Lycosa vulpina. Eprgynum.
Figure 3.-Lycosa cinerea. Female.
Figure 3 .-The same. Mate palpus.
Figure 3b. -The same. Eyes.
Figure 4.-Lycosu nidifex. Female.
Figure ta.-The same. Epigynum.
Figure 1b. -The same. Male palpus.
Figure 5.-Lycosa nigroventris. Female.
Figure $5 a$.-The same. Female, under side.
Figure 5b.-The same. Male palpus.

Figure 6.-Lycosu communis. Female.
Figure $6 a$. - The same. Under side of female.
Fignre 6l,-The same. Another varicty of dorsil marking.
Figure fic.-The same. Epigynum.
Figure 6,d.-The same. Male pralpus.

Plate Xlvili.

Figure 1.-Lycosu punctuketu. Female; $\times 4$.
Figure $1 a$.-The same. Under side of ablomen.
Figure 1b,-The same. Epigynum.
Figure 3.-Lycosa scutulata. Fremale.
Figure 2a.-The same. Epryyum.
Figure 3.-Purdosu allomuculuta. Female from aleohol.
Figure 3u.-The same. Epigynum.
Figure 3b.-The same. Male palpus.
Figure 4.-Pardosa brunnea. Female; $\times 4$.
Figure 4u.-The same. Male palpus.
Figure 4b.-The same. Epigynum.
Fignre 5.-Pardosu lapiticina. Female; $\times 1$, from one in alcolnol.
Figure $5 u, 5 b$.-The same. Male palpus.
Figure 5c.-The same. Epigynum.
Figure 6.-Lycosa ocreale. Male; $\times 4$.
Figure $6 a$.-The same. Front of heal and eyes.
Figure 6b.--The same. Male palpus.
Figure 7.-Piratu piraticus. Female; $\times 4$.
Figure 7u.-The same. Eyes.
Figure 76.-The same. Epigynum.
Figure 7c, 7d.-The same. Male palpus.
Figure 8.-Piratu insularis. Female; $\times 8$.
Figure 8a.-The same. Epigynum.
Figure 9.-Pirata montenus. Female; $\times 8$.
Figure 10.-Pirata minutus. Front of leand and syes of female.
Figure 10a.-The same. Male palpus.
Figure 10b, 10c.-The same. Spinnerets.

Plate ILIX.

Figure 1.-Parlosu niyropulpis. Female; $\times 8$.
Figure lu-The same. Male ; $\times 8$.
Figure 1b, 1c.-'The same. Male palpus.
Figure 1%-The same. Wpigynum.
Higure 2.-Puilosul ullopratelle. Female ; $\times 8$.
Figure 2a.-The same. Male; $\times 8$.
Figure 26 .-'The same. Malle palpus.
Figure 3.-Purdosu putlidu. Fomale; $\times 8$.
Figure 3u.-The same. Male; $\times 8$.
Figure 36 . -The sime. Under side of female.
Figure 3c.-The stunc. Epigynmm.

Figure 3d.-The same. Top of head and eyes.
Figure $3 e$.-The same. Male palpus.
Figure 4.-Purilosa bitineata. Female.
Figure 4a.-The same. Under side.
Figure $4 b$.-The same. Epigynum.
Figure 5.-Purdosa montanu. Male palpus.
Figure 5ra.-The same. Epigynum.
Figure 6.-Aulonia curantioce. Cephalothorax of female: $\times 20$.
Figure 6a.-The same. Male palpus.
Figure 6b.-The same. Fpigynum.
Fignre 7.-Ocyale undatu. Back of female; $\times 4$.
Figure 7a.--The same. Male palpus.
Figure 8.-Dolomedes sexpunctatus. Female.
Figure 8a.-The same. Under side of thorax.
Figure 9.-Dolomedes tenebrosus. Dorsal markings ol young.
Figure 9a, 9b.—The same. Male palpus.
Figure $9 c$.-The same. Epigynum.
Figure 10.-Dolomedes fontonus. Male palpus.
Figure 11.-Oxyopes scalaris. Female; $\times 8$.
Figure 11 . -The same. Front of head, eyes and mantiljes.

I NDEX.

Abralia megalops, 143, 264, 285
Ahra lioica, 224, 278, 285.
longicallis, 224, 228, 283, 285.
Acanella Normani, 410.
Aclis striata, 270.
tenuis, $270,480$.
Walleri, 270.
Acirsa gracilis, 270.
Acrosoma, 297, 326.
mitrata, 327.
rugosa, 326.
spinea, 326.
Actæon hebes, $428,447$.
melampoides, $210,273,285$.
nitidus, 273, 283.
puncto-striatus, 467.
Acus protextus, 462.
Addisonia paradoxa, 256, 271. eccentros, 271.
Additions to the Shallow-water Mollusca of Cape Hatteras, N. C., dredged by the
U. S. Fish Commission Steamer "Alba-
tross," in 1883 and 1884, 453-480.
Admete Couthouyi, 265, 282.
nodosa, 419, 447.
viridula, 265.
Agalena, 24.
Alloposus mollis, 247, 265, 282.
Amaurobius, 38.
Amphisphyra globosa, 273.
pellucida, 273.
Amussium, 261, 281, 285, 180.
fenestratum, 261.
Hoskynsi, 261.
A nachis costulata, 252.
Haliæeti, 252, 268, 479.
Anatomy of Libinia emarginata Leach, the Spider Crab, 99-122.
Ancistrocheirus megaptera, 390, 446 :
Teranyi, 400.
Andrena, 389.
Andrews, E. A., On the Anatomy of Libinia emarginata Leach, the Spider Crab, 99-122.
Anomia aculeata, 282, 479.
Aporrhais occidentalis, 270, 283.
A rea aurita, 440.

Arca petunculoides, 280, 285, 440.
var. crenulata, 280 .
var. Friclei, 280.
var. septentrionalis, 280.
profundicola, 439.
Arctosa, 482.
Argiope, 328.
riparia, 329.
transversa, 330 .
Argonauta argo, 247, 265.
Argyrodes, 7, 23.
fictilium, 2, 24.
trigonum, 2, 11, 23, 62
Argyroepeira, 297, 331.
hortorum, 332.
Ariamnes, 23.
Arpagita, 393.
Artemia, 89.
Monica, 89.
Asagena, 7, 22.
americana, 4, 23.
Assiminia Grayana, 253.
modesta, 253.
Astarte castanea, 278, 479
crenata, 278, 479.
quadrans, 278.
undata, 477.
Astyris diaphana, 268.
pura, 268, 282, 462.
zonalis, 268, 479.
Atlanta bulimoides, 215.
fraudichaudii, 211, 274.
inclinata, 211, 275, 469.
Lamanonii, 211, 275.
Peronii, 274, 469.
pulchella, 211, 275.
reticulata, 431.
rosea, 211, 274.
trochiformis, 214.
Atretia gnomon, $234,398,445$.
Aulonia, 498.
aurantiaca, 499.
Avicula hirundo, 281.
var. nitida, 281.
squamulosa, 233, 281.
Axinopsis, 279, 283.
Axinus tortuosus, 226.

I alantinm recurvim, 275,
Batlyphinntes, 8 , fis.
alpina, $7^{\prime \prime}$.
angulata, 71.
bihamata, 72
complicata, 72.
formica, 71.
micaria, 71.
minuta, 3, 68.
nebulosa, 3,69 .
sub-alpina, 70.
terricolus, 65.
zebra, 69.
zebrimes, 69.
Bela Plakei, 417, 4.17, 452.
cancellata, 266.
concinnula, 249.
decussata, 419.
Gouldii, 266 .
harpularia, 266.
hebes, $160,240,266,290$
impressa, 250.
incisula, 266.
mitrula, 249.
var. conciunula, 249, 266 .
pleurotomaria, 161, 266.
pygmæa, 266, 282.
Rathbuni, 236, 266, 282.
Sarsii, 250.
scalaris, 162, 418.
subturgida, 161, 266.
subvitrea, 160, 266.
tenuicostata, $419,447$.
tenuilirata, 266.
Bembex, 389.
Benthodolium, 177.
abyssorum, 177, 268, 283, 284.
Benthoteuthis, 401.
megalops, 402, 446.
Bolyphantes, 8, 72
drassoides, 72.
Bombidia, 389
Bombus, 389.
Brachiotenthis Beanii, 245, 264
Brachyglossum, 389.
Buccinopsis striata, 168.
Buccinum abyssorum, 167, 266, 282.
cyancum, 266.
Sandersoni, 267.
Tottenii, 252.
modatmo, 267.
Bulla biplicata, 467.
Candei, 468.
Sagra, 467.
Bush, Katharine J., Additions to the
Shallow-water Mollusea of Cape Hatte-
ras, N. C., dredged by the U. S. Fish
Commission Steamer "Allatross," in
1883 and 1884, 453-480.
Cadulus C'arolinensis, 471.
cylindratus, 220, 276, 283.
graulis, 219, 276, 283, 433.
incisus, 471.

Carlulus Jeffreysii, 257, 27ti.
Pardionis, 219, 276.
propinquas, 257, 276.
spectabilis, 432.
Watsoni, 219, $276,285$.
Cacum Cooperi, 291, 463. pulchellum, 463.
Calliostoma Bairlii, 270, 285, 480. occidentale, 270.
Callista convexa, 278.
Calliteuthis reversa, 24:3, 26.4, 282, 281
Capulus fallax, 192.
Itungaricus, 192, 269.
Cardita horealis, 258, 477. gramulata, 258.
Cardium peramalitis, 278,285
pinnulatum, 278, 477.
Carinaria Atlantica, 274.
Cavolina angulata, $213,275$.
gilbosa, 213, 275.
inflexa, 275, 470.
longirostris, 275, 470.
rquadridentata, 212, 275, 470.
tridentata, 275, 463.
meinata, 275, 469.
Ceratina, 32.
Ceratinclla, 8, 32.
atriceps, 3, 3.4.
brumnea, 36.
bulbosa, 33.
emertoni, 3, 32.
fissiceps, 3,33 .
læta, 3, 35.
letabilis, 3, 35 .
micropalpis, 36.
minuta, 36 .
pygmiea, 34.
Ceratinopsis, 8,36 .
interpres, 3, 37.
laticeps, 37.
nigriceps, 37.
nigripalpis, 38.
Cerithiella Whiteavesii, 270.
Cerithiopsis Emersonii, 463.
Cerithium protextum, 462.
turris-thome, 463.
Ceromia aretata, 278.
Chama congregata, 478 .
Chemuitzia cancellata, 467 .
Chione alveata, 477.
Chirotenthis lacertosa, 243, 26.1, 282, 284.
Chittenden, R. H., The Diastatic Action of Saliva, as Modified by various condi-
tions, studied Quantitatively, 3.13-376.
Choristes clegans, var. tencra, $256,273$.
Choristodon? eancellatus, 435.
Oingula abyssicola, 182.
aculons, $241,269$.
apicina, 183, 269, 283.
arenaria, 181.
arcolata, 181, 269
hasistriatum, 199.
hryedia, 179, 269, 28:3
(i ingula carinata, 181, 269, 180.
liarpa, 181, 269.
Jau-Mtyeni, 180, 269, 283
Jeffreysi, 182.
moilesta, 253.
leptalea, 182, 269.
Sandersom, 211, 26:
syngenes, $180,269$.
turgida, 269.
turricula, 241.
Cirrhoteuthis, egrgs of, 410 .
megaptera, 405,46 .
plena, $404,146$.
Cithua cingulata, 18.t, 26:5,28:3.
olivacea, 155, 269, 283, 463.
tenella, var. costulata, 181, 269, 284.
Clidiophoria, 475.
trilineata, 277, 475.
Clione longicaudata, 215, 27 (;
papilionacea, 276 .
Clio pyrimidata, 275, 470.
Cleotiora striata, 430.
sululata, 213.
virgula, 213.
virgula, var., 214.
Cucculina Beanii. 203, 204, 271.
conceutrica, 203.
conica, 204, 271.
Dalli, 203, 271.
leptalea, 202, 271, 283, 284.
Rathbuni, 271.
Cocculina reticulata, $426,117,180$
spinigera, $\because 03,271$.
Cochlodesma Leanum, 278.
Columbella halixeti, 252.
Conoprejus, 389
Conopidae, 387.
Conopilla, 389.
Conopinee, 387.
Conops, 91, 377, 387, 3x9, 391.
athiops, 391.
brachyrliynchus, 390 .
bulbirostris, 390.
excisus, 390.
flaviceps, 390.
fronto, $378,390$.
fulvipennis, 390 .
genualis. 391.
gracilis, $377,390$.
nigricornis, 391.
obscuripenuis, 390 .
pictus, 390.
Ranondi, 390.
stylatus, 93.
sugens, 390.
sylvosus, 390.
tibialis, 389.
xanthopareus. 393.
Couns Delessertii, 453.
Floridamus, 453.
Corbula disparilis, 472.
Swiftiaua, 47 .
Cornicularia, 8. 40.

Comicularia turanticeps, 43,46 .
brevicornis, 4 .
clavicornis, 43.
communis, 11.
directa, 3, 40.
indirecta, 3,11 .
minuta, 42.
pallida, 42.
tibialis, 41.
tricormis, 43.
Coryphella, 274.
Crassatella, 477.
Grassatella (Eriplyyla) lunulata, 177.
Orenella decussata, 281, 285, 180.
fragilis, 444.
glaudula, 281, 479.
('repidula plana, 269.
Orescis spimifera, 213.
striata, 430.
Crucibulun striatum, 269, 480.
Crustulina, 19.
Cryptodon ferruginosus, $279,2 \times 3$
Gouldii, 279, 283.
graudis, 436 .
obesus, $279,283,285,478$.
plicatus, 437.
subovatus, 279.
tortuosis, 226, 269, 283.
Guvieria colummella, 214.
Cyclocardia borealis, 177.
('yclosa, 297, 321.
conica, 321.
Cyclostrema affine, 199, 271.
cingulatum, 198, 271.
Dalli, 255, 271.
var. ornatum, 255, 271.
diaphanum, 199, 271, 283, 284.
rugulosum, 199.
(Cylichna alba, 273, 283.
biplicata, 467.
celata, 468.
Dalli, 274, 283.
eburnea, $428,447$.
occulta, $274,283$.
Cylindrogaster, 389.
Cymbulia calceolus, 275.
Cyphoma gibbosa, 462.
Cyprina Islandica, 278, 477.
Cyrtarachne, 297, 325.
bisaccata, 325.
Cyrtogaster, 325.
Cytherea obovata, 477.
Cyrtodaria siliqua, 277.
Dacrydium vitreum, 281, 283.
Dalmaunia, 94, 388, 394.
nigriceps, $94,394$.
picta, $94,394$.
Daphnella limacina, 265, 285.
DeForest, F . L.. OH an Unsymmetrical Law of Error in the Position of a loint
in Space, 123-138.
Defrancia formosa, 152.

Delphimula nitida, 424, 447 .
vendronotus, 274. arhorescens, 274.
Dentalium, sp. g., 217, 276, 28:3, 285.
Dentalium, sp. 1., 217, 276, 283, 285. candidum, 217.
capillosum, 218,
ensiculus, 432.
laqueatum, 431.
leptum, 470.
occidentale, $216,218,276.28: 3$
var. sulcatum, 217, 276, 283.
solidum, 215, 276, 283.
striolatum, $216,276,283$.
Deudronotus robustus, 274.
Desmoteuthis hyperborea, 264.
tenera, 245, 264, 282.
Diacria trispinosa, 275, 470.
Diaphama conulus, 273, 129.
gelnma, $273,283,284$.
nitidula, 273.
pertennis, 273.
Diastatic Action of Saliva, as Moditied by varions Conditions, studied Quantititively, :343-376.
Diplodonta turgida, 279, 479.
Diplostyla, 8, 65.
canadensis, 66.
concolor, 3, (i6.
nigrina, $3,65$.
Diplothyra Smithii, 472.
Dipterous Larvie from the Western Alkaline Lakes and their uses as IIuman Food, 87-90.
Discina Atlantica, 233, 282, 284, 398, 446 .
Dolium Bairdii, 253, 268.
Dolonedes, 500.
fontanus, 502.
sexpunetatus, 501.
tenebrosus, 501.
Doris complanata, 274.
Dosinia obovata, 477.
Doto coronata, 27.t.
Drapetisea, 8, 66.
socialis, 3, 67.
Elertonella, 144.
pygmea, 145, 265, 284.
Eloduno verrucosa, 248, 265, 282.
knerton, J. H., Now Bngland Lyeosidiu, 182-505.

New England Spiders of the Family Eperida, 295-341.

New Fngland Spiders of the Fimily Theridide, 1-86.
Einsatella Amerjcana, 277.
Eolis papillosa, 274.
Epeiri, $297,298$.
allinis, 305 .
alboventris, $31 \cdot 1$.
angulata, 298, 29\%.
anmulipes, 309.
apoclisa, 305.

Epeira aureola, 307
baltimoricusis, 315.
bruemichii, 331.
c:arbonaria, 315.
camdata, 321.
ceropegia, 316 .
cinerea, 298, 302.
conica, 321 .
corticaria, 298, 300 .
displicata, 313.
domicili, 298.
tomiciliornm, 310, 31?.
ectypa, 319.
fasciata, $: 330$.
foliata, 318.
formosa, 305.
lusca, 328.
gibberosi, 317.
globosa, 315.
Hentzii, 312.
hilaris, 305.
hortorum, 332.
infimata, 319.
iusularis, 309.
juniperi, 313.
labyrinthea, 314.
maculata, 317.
marmorea, 307.
mitrata, 327.
nordmami, 298, 301.
olrest, 307.
packardii, 315.
parvila, 317.
patagiata, 302, 305.
placida, 316 .
pratensis, 310 .
pyramidata, 308.
quadrata, 307, 339.
riparia, :329.
ringosa, 326.
selopetaria, 302, 303.
sericata, 303 .
septima, 307.
silvatica, $298,300$.
solitaria, $298,299$.
spinea, 326.
stellata, 319.
strix, $302,305$.
sutrix, 329.
thadlens, 309.
triaramea, 315.
trifolium, 306.
trivittata, 298, 310, 311 .
vulgaris, 30.1.
Epeiriut, 997.
Ephydra, 87, 89.
Califormea, $89,90$.
gracilis, 90.
halophilat, !0.
himas, 90.
subopaca, !0.
Erigone, s', 58.
atra, 3, $5!$.

Erigone atriceps, 3, 34 .
antumnalis, 58.
cornupalpis, 4, 74
cristata, $3,44$.
dentigera, 3, 59.
directa, :3, 40 .
emertoni, 3, 32.
fissiceps, 3, 33.
florens, 4,46 .
indirecta, 3,41 .
interpres, 3, 37. licta, $3,35$.
lætabilis, 3, 35.
lougipalpis, 3, 59.
multissima, 4.
ornata, 3,39 .
persimilis, 3 .
persoluta, 4, 74.
pertinens, 3, 54.
pictilis, 3, 38.
probata, 3. 52.
provida, 3, [0 .
spinifera, 3,47 .
viaria, 4,73 .
Erigonine. 7.
Ero, 7, 17.
thoracica, 2, 18.
variegata, 79.
lethalia multistriata, 242, $270,480$.
Encera, 389.
Encharia, 18.
Eulima distorta, 272.
intermedia, 272.
stenostoma, 254, 272, 283.
Eulimella chariessa, 193, 272, 284.
lucida, 192, 272, 284.
(or Menestho) lissa, 195, 272.
nitida. 194, 272, 284.
Smithii, 272, 480.
Euryopis, 7, 26.
argentea, 27.
funebris, 2, 27.
Facelina pilata, 274.
Fairmairia, 393.
Fiona nobilis, 274.
Firola Kerandrenii, 212, 275.
Firoloidea Lesueurii, 130.
Fissurella redimicula, 255.
Tanneri, 255, 271.
Fossarus clegans, 269.
Fusus concinnus, 175.
costulatus, 252.
Gadinia excentrica, 271.
Ganesa, 201, 271.
Glancus Boscii, 430.
margaritaceus, 430.
Glomus uitens, 231, 280, 284.
Glossigona, 377.
Gonatinm, 8, 60.
cheliferum, 60.
rubens, 60.
fronirhyuchus, :393.
Gouldia mactracea, 477.
Girammonota, s, 38.
inoruata, 39.
ornata, 3, 39.
pictilis, 3, 38.
Gymmobela, 157.
brevis, 417, 447, 152.
curta, 158, 266, 282.
var. subangulata, $159,240,266,282$. 284.
engonia, 157, 266, 282.
heles, 282, 284, 290.
Halictus, 389.
Hanlegia menticaria, 272.
Hanstella, 393.
IIclophora; 8, 67.
insignis. 3, 67.
pallescens, 67.
Heterodoris robusta, 274.
Heteroteuthis tenera, 265.
Histioteuthis Collinsii, 264.
Hyalra angulata, 213.
corniformis, 214.
flava, 213.
gibbosa, 213.
quadridentata, 212.
Hyleus, 389.
Ianthina fragilis, 270.
Idas argenteus, 202, 281, 284, 285.
Ischiodonta, 393.
Isocardia cor, 438 .
Issa ramosa, 274.
Jumala brychia, 422, 447.
Kelliella, 279, 285.
miliaris, 438.
nitida, 438.
Kennerlia glacialis, 277.
Koonsia obesa, 274.
Lacuna glacialis, 183.
tenella, 18 t.
Lamellaria pellucida, 268, 479.
var. Gouldii, 268, 283.
Lasæola, 7, 26.
cancellata. 2, 26.
Leda acuminata, 227.
acuta, 259, 280, 285, 479.
Bushiana, 229, 280.
commutata, 259.
fragilis, 259.
Jamaicensis, 260, 285
Jeffreysi, 229.
lata, 229.
messanensis, 227.
minuta, 230.
pernula, 280.
suhequilatera, 229.
tenuisulcata, 2:30, 280.
unca, $259,479$.

Leopoldius, 389.
Lepeta cacea, 447, 452.
Lepetella tuhicola 271.
Leptliyphantes, fis.
crypticola, 69.
muscicola, 68.
Leplochiton alveolus, 272.
Leptoteuthis, 140 .
diaphana, 141, 264, 282.
Fabricii, 264.
vermicolaris, 143.
Leptothyra induta, 197, 270, 285. (induta, var.) albida, 197.
Lubinia emarginata, 99.
Timea suhovata, 281. 284.
Timopsis, 280, 284, 285.
affinis, 442 .
aurita, 440.
cristata, 231, 280, 285.
minnta, 280, 284, 285, 443.
plana, 441.
tenella, 232, 281, 284, 285.
Linyphia, 8, 60.
autumnalis, 69.
elathrata, 3, 62.
communis, 2, 62.
costata, 2, 63.
mandibulata, 64.
marginata, $2,3,61$.
marmorata, 2, 61 .
nebulosa, 4.
phyrgiana, 2, 63.
pusilla, 64.
scripta, $2,61$.
Linyphinæ, 8 .
Lithyphantes, 19.
Litiopa bombyx, 269.
Loligopsis vermicolaris, 143 .
Lonchopalpus, 393.
Lophocarenum, 8, 45.
brevis, 82.
eastancum, 45.
erenatum. 51.
decemoculatum, 46.
depressum, 50.
erigonoides, 50.
florens, $4,46$.
latum, 50.
longitubus, 49.
longitarsus, 48.
montanum, 45.
montiferum, 47.
pallidum, 48.
quadrieristatum, 48.
rostratum, 49.
scopuliferum, 49.
simplex, 50.
spiniferum, 3,47 .
vernale, 51.
lophomma, 8, 43.
bicorne, 44.
eristata, 2, 3, 44.
elongata, 44.

Lopliyrus exaratus, 208.
Loripes lactens, 259. lens, 259, 279.
lucina filosa, 279, 478. nassula, 478. trisuleata, 478.
Lunatia (rönlandica, 268, 283. heros, $268,463$.
levicula, 291. nana, 268.
Lycosa, 482, 494. arenicola, 487 . carolinensis, 186. cinerea, 488. communis, 489. frondicola, 484. kochis, 485. nidicoln, 482. nidifex, 487. nigroventris, 488. ocreata, 491. pictilis, 485. polita, 484. pratensis, 483. punctulata, 490. scutnlata. 491. vulpina, 487.

Macoma, 278.
sabulosa, 278, 283.
Macha Cumingiana, 475.
strigillata, var., 475.
Machera costata, 472.
Macharoplax olscura, 271. var. carinata, 271.
Malletia obtusa, 226, 280, 283.
Mangilia cerina, 250, 458 .
ceroplasta, 458 .
ephamilla, 457.
eritima, 456.
glypta, 461.
melanitica, var. oxia, 459.
oxytata, 460.
psila, 455.
Margarita, 425, 447.
agleës, 285.
lamellosin, 255, 270, 285. regalis, $254,270,283$.
Marginella apicina, 166.
borealis, 165, 267, 479.
earnea, 165.
conoidalis, 166.
limatula, 166.
roscidar, 166.
Smithii, 447, 452, 462.
Virginiana, $420,452$.
Martesia cunciformis, 472.
Mastigoteuthis Agassizii, 243, 264, 282.
Menestho Brumeri, 272.
suleata, 272.
Meta, 328.
menardi, 328.
Mieroepeira, 297, 320.

Microepeiara radiosa, 320.
Micrommata carolinensis, 499.
serrata, 499.
undata, 499.
Microneta, 8, 73.
cornupalpis, 4, 74.
crassimanus, 75.
discolor, 75.
furcata, 76 .
latidens, 76.
longibulbus, 76.
olivacea. 77.
persoluta, 4, 74.
quinquedentata, 75.
quisquiliarum, 73.
viaria, $3,4,73$.
Mimetus, 7, 16.
epeiroides, 17.
interfector, 2, 4, 16.
Modiola nodiolus, 281.
Modiolaria corrugata, 281, 480.
discors, 281.
nigra, 281, 480.
polita, 281, 285.
Mohnia Molnii, 174.
Montacuta bidentata, 479. ovata, 279
tumidula, 225, 275, 28:3.
Mya ferrnginosa, 225.
truncata, 277.
Myора, 38:, 388, 389, 393.
apicalis, 393.
biannulata, 93 .
bistria, 394.
clausa, 385, 393.
conjuncta, 393.
longicornis, 386, 394.
obliquofasciata, 385, 304.
pictipennis, 382, 393.
pilosa, 383, 393.
plebeia, 384, 393.
rubrifrons, 392.
stylata, 91, 394.
vesiculosa. 384, 393.
vicria, 386, 394.
Myopella, 393.
Myopina, 393.
Myopinæe, 388.
Mytilimeria flcxuosa, 258, 278.
Mytilus edulis, 281.
Nassa consensa, 462.
nigrolabra, 268.
Natica clansa, 268, 283.
Neqra, 27.
alteruata, 285.
costata, 472.
gigantea, 223, 277, 283.
glacialis, 277.
lamellosa, 277.
multicostata, 277, 285.
var. curta, 277.
obesa, 277, 283.

Neara ormatissima, 473.
palucistriata, 173.
perrostrata, 277, 285.
rostrata, 277, 285.
undata, 223, 277, 285.
Neptunea decemcostata. 268.
despecta, var. tornata, 268 .
Nericue, 45,52.
incisa, 47.
rubens, 60.
viaria, 73.
Now England Lycosida, 483-505,
New England Spiders of the family Epeiridæ, 295-341.
New England Spiders of the family
Theridide, 1-36.
Niso :Lgleës, 465.
Nortl American Conopidte, 91-98.
Nucula acuta, 259.
cancellata, 231, 280, 283, 285.
delphinodonta, 280, 283, 479.
grauulosa, 280.
proxima, 280.
reticulata, $2: 31$.
tenuis, 280, 283, 285.
trigona, 438.
Oecemyia, 95, 392.
Octopus Bairdii. 265.
Carolinensis, 235, 265.
gracilis, 236, 265, 283.
lentus, 265.
piscatorum, 248, 265, 282.
Ocyale, 499.
mirabilis, 499.
uudata, 499.
Odostomia, 273.
caucellata, 467.
disparilis, 196, 273.
engonia, 466.
var. teres, 4.57.
tornata, 196, 273.
unidentata, 272.
Olynerus, 389.
Oedipoda, 389.
Omalaxis (?) lirata, 452, 464. nobilis, 123, 447.
Ommastrephes illecebrosus, 261, 282.
Oncomyia, 95, 388, 392.
abbreviata, 96, 97, 393.
Baroni, 96, 97, 392.
loraria, 98, 393.
modesta, 96,393 .
var. melanopoda, 393.
Opusthotenthis Agassizii, 408, 446.
Oroodes, 28.
paradoxus, 28.
Osinia, 389.
Oxygyrus Keraudrenii, 430.
Oxyopes, 502.
scalaris, 502.
Puchygnatha, 298, 336.

Pachygnatha autumaalis, 337. brevis, 336. thistriata, 336, 311.
Pandora, 17.1. Carolinensis, 474.
l'ardosia, 4!4.
alhomaculata, 495.
allopratella, 197.
bilineata, 496.
brumea, 195.
lapidicina, 494.
montina, 498.
nigropalpis, 497. pallitla, 496.
Pecehiolia abyssicola, 278, 283
gemma, $255,278,283$.
granulifera, 4.:4.
Pecten Clintouius, 261, 281, 479.
fragilis, $2: 32,281$.
glyptus, 281.
1loskynsi, 2 (61.
imbrifer, 261.
1 slandicus, 281.
leptalens, 232, 281.
Magellanicus, 262.
prineipoides, 261.
pustulosus, 232, 261, 281.
striatus, 233. 281.
teuuicostatus, 261, 479.
var. aratus, 262.
undatus, 444 .
vitreus, 281.
var. pistulosus, 261.
Pectunculus tricenarius, 479 .
?'eriploma papyracea, 277, 283, 431.
undulata, 433.
Phalops fureillatus, 43 .
Phaseolus ovatus, 230, 280, 284.
Philine, 273.
amabilis, 273.
engulata, 273.
Finmarchica, 273.
quadrata, 273.
Sagra, 467
tincta, 273.
Pholatomya arata, 278.
lholas cunciformis, 472 .
Pholeomma, 7, 29.
gitbum, 29.
hirsutum, 29.
rostratum, 30.
Pholcus, 7, 30.
atlanticus, 2.
phal:mgioides, 2, 3u
Phorosia, :393.
Phyllonethis lineated, f, 16 .
placens, 4, 15.
Physocephala, 385, 391.
affinis, 391.
Burgessi, 391.
castamoptera, 392.
limeillata, 391.
marginata, 391.

Physorcphala sacittaria, 331 .
'Texama, 391.
tilialis. 391.
Pictina, 393.
1'ilidinu commodum, 191. radiatum, 1!9.
Dilisens commotus, 191, 208
Pirata, 492.
insularis, 492.
mmutus, 49%.
moutanus, 493.
piraticus, 492.
Placophora (Euplacophora) Athatica, 206, 272.

Pleurobranchava tarda, 274.
Pleurobranchus Americauus, 12! , 417.
Pleurocina, 389.
Pleurophyllidia Cuvicri, 469.
I'leuropus llargeri, 275.
l'leurotoma Carpeuteri, 265.
comatotropis, 265, 285.
I) alli, 265.
(Mangilia) bantella, 250.
Pleurotomelia, 146.
Agassizii, 148, 265, 282, 415.
Baircii, 147, 265, 282, 284.
banlella, 250, 266, 282, 284, 285, 415.
Benedieti, 148, 151, 152, 266, 282.
Brumeri, 155, 266, 282, 284, 416.
Cathariure, 155, 266, 282, 284.
Diomedere, $152,250,266$.
Emertoni, $154.250,266,282,285,113$.
tormosa. 152.
Frielei, $413,4 \not 46$.
Jeffreysii, 411, 44G.
Lottre, $415,447$.
Packardii, 146, 265.
Pandionis. 265.
Saffordi, 151, 266, 252.
Sandersoni, 149, 266, 282, 254, 415.
tineta, 412,446 .
vitrea, 114, 447.
Pneumodermon Peronii, 431 .
Pompilus, 389.
Poromya granulata, '223. 277, 285.
var. rotundata, 277 .
rotundata, 22:3.
sublevis, 221, 277, 283.
P'rimnoa reseda, 192.
Propilidium compressum, 262.
clegans, 205. 271, 28:3.
pertenue, 262, 271.
l'tychoproctus: 91, 394.
I'uncturella abyssicola, 425, 417.
(Fissurisepta) eritmeta, 201, 271, 2 s 3.
noachina, 271, 426.
P'urpurella, 393.
Pyrene costulata, 252.
Ringicula nitida, 273, 2s5.
Rossia Ilyatti, 265.
megaptera, 345, 264.
sublevis, 265.

Rotella anomala, "4․
eryptospira, 241, 270.
striata, 242 .
Saxicava arctica, 47!
Norvegica, 277.
Scalaria Audrewsii, 270.
Dalliana, 270.
Leana, 270.
leptalea, 465.
Pourtalesii, 270. teres, 465.
Seaphamer wohilis, 209, $273,25: 3$. puncto-striatus, 210, 273, 283.
Seissurella crispata, 271.
Scrohicularia longicallus, 224.
Seyllea kdwardsii, 274, 469.
Seytorles, 7, 31.
cameratus, 2, 31.
thoracica, 2, 31.
Scytodinee. 7.
Second Catalogne of Mohlusea receutly adiled to the Finna of the New England Coast and the adjacent parts of the Atlantic, consisting mostly of Deep-Sea Species, with Notes on others previously recorded, 139-294.
Seguenzia, 186.
carinata, 191.
elegans, 191.
eritima. 189, 270, 283, 284.
formosa, 186. 270, 283, 284, 285.
var. nitida, 188, $270,284$.
ionica, 191.
Seguenzidie, 186.
Semele lata, 476.
Sicus, 377.
Sigaretus maculatus, 463.
Siliqua costata, 472.
Singa, 321.
maculata, 323.
pratensis, 322.
variabilis, 322 .
Sipho cælatus, $169,172,267$.
var. liebes, 172, 267. 282.
concinuus, 175 .
glyptus, 172, 174, 267.
hispidulus, 239, 268, 284.
leptaleus, 175, 268.
liridus, 251.
(Mohnia) celatulus. 172, 267, 282.
(Mohnia) parvus, 174.
(Mohnia) simplex, 174, 268.
obesus, 168, 267.
parvus, 267.
profundicola, 170, 267, 282, 284.
var. dispar, 171, 267, 282.
pubescens, 267.
pygmaeus, 172, 267, 479.
var. planulus, 266.
Spitzbergensis, 251.
Stimpsonii, 267.
var. liratulus, 26 .

Siphodentalimm teres, 218, 276, 28:\%. vitrenm, $276,283$.
Siphonentalis aftinis, 271; , 253
Lofotensis, 276.
Skenea lirata, $152,464$. trilix, 464
Smith, llerbert R., Jiastatic Action of saliva. as moditied by varions Condi-
tions. studied Mautitatively: :313-37ti.
Solnium boreale, 270 .
Solemya velum, 279 .
var. borealis. 279.
Spermophora, 7, 31. meridionalis, 2, 31.
Sphex, 389.
Spintharus, 7, 28. flavidus, 2, 28.
Spirialis balea, var., 276. bulinoides, 215, 276. clathrata, 431. Gouldii, 276. reticulata, 4:1. retroversus, var. Mac Ludrei, 275. rostralis, 431. trochiformis, 214, 276.
Spiropalpus, 8, 39. spiralis. 39.
Spirotropis ephamilla, $162,266,282,284$.
Spisula ovalis, 278. solidissima, 278.
Spyxosoma, 389.
Staclyynia, 94, 394.
Stauroteuthis, eggs of, 410 . syrtensis, 249, 265, 409.
Steatoda, 7, 8, 18. borealis, 2, 4, 19.
corollata, 2. 19, 21.
guttata, 1, 19, 20.
marmorata, 2, 5, 20, 32:3.
nigra, 21.
ruralis, 4, 20.
serpentina, 19.
triangulosa, 2, 4, 22.
Stegasoma. 28.
Stemonypliantes, 8, 64. bucculentus, 3, 64. trilineata, 64, 83.
Sthenoteuthis, Bartramii, 264.
Stilifer curtus, $272,283$. Stimpsoni. 272, 283.
Stolotenthis lencoptera, 264.
Stylogaster, 91, 377. 388, 389, 394.
biannulata, 91. 93, 394.
neglecta. 91, 394.
stylatus, 93.
Stylogastrine, 388.
Stylomyia, 91, 394. confusa, 93, 394.
Styliola recta, 275.
striata, 430.
subulata, $213,275,470$.
virgula, 213, 275, 470.
var coruiformis, 214, 275.

Stylophora, 65. concolor, 66.
Syudosmya longicallis, 2コ2.
'T'apes, 135.
virgineus, 435.
Thranis Mörchii. 267, 285
vir. tornatus, $251,267,282$.
pulchella, 267.
'larentula, 482.
'Teeturia galeola, 427.
Tegenaria medicinalis, 192.
Teleotenthis (Onychia) agilis, 400, 146.
'Iellimya fermginosa, 225, 293.
I'ellina lintea, 476.
longicallis, 224.
'l'erehratula cranium, 234.
tenera, 234.
Terebrafulina septentrionalis, 282.
'Teredo megotara, 277, 283.
Tergipes despectus, 274.
Tetragnatha, 298, 332.
eaulata, 335 .
elongata, 334.
extensa, 333,334 .
grallator, 334.
laboriosa, 334.
straminea, 335 .
vermiformis, 333.
'Tetragnathinx, 295.
Teutana, 19.
triangulosa, 22.
'Tharsis, 201, 271.
Thecophor:, 392.
Theridida, 4.
Theridinæ, 7.
Theridion boreale, 2, 4, 19 .
cancellatum, 2, 26.
fictilimm, 2, 24.
fronderm, $2,4,15$.
funebre. 2, 27.
globosum, 2, 14.
leonium, 2, 18.
marmoratum, 2, 4, 20.
serpentimm, 2, 4, 22.
splirerula, 2, 25.
trigonum, 2, 23.
vulg:are, 2, 13.
Theridinm, 7, 8.
diflerens, 9.
frondoum, 2, 5, 15.
globosum, 2, 14.
lineatum, 2, 16 .
montanum, 10.
murarimm, 11.
punctis-sparsum, t, 12.
quadripmetatum, 19.
rupicola, 14.
sexpmetatum, 12.
spirale, 10 .
tepidariorum, 2, I, 13, 328.
mimaculatum, $\mathbf{1 5}$.

Theridimn varians, 12. zelotypum, 4, 11.
Theridula, 7, 25. gonygaster, 25 .
sphærula, 2, 25.
Third Catalogue of Mollusear recently added to the Fauna of the New England Coast and the adjacent parts of tle Atlantic, cousisting mostly of Deep-scia Species, with Notes on others previonsly recorded, 395-452.
Thricia Couradi, 278, 479.
nitida, $221,278,25: \%$
Tmeticus, 52.
1,identatus, 56.
hostoniensis, 56 .
brumeus, 58.
concavis, 57.
contortus, 54.
longisetosus, 54.
maximus, 55.
microtarsus, 57
montauns, 55.
pallidus, 55.
pertimens, 3, 54.
plumosus, 53.
probatus, 3, 52.
terrestris, 57.
tibialis, 56.
tridentatus, 53.
trilobatus, 53.
truncatus, 57.
Torellia fimbriata, 269.
var. tiarelli, 269.
vestita, 269.
Tormatella puneto-striata, 467.
Trachydermon albus, 209, 272.
exaratus, $208,272$.
Trichoeyelns Dumereilii, 215, 276.
Trichotroptis (?) inflati, $175,264,283$.
Triforis turris-thoma, 463.
Triptera columnella, 214, 275.
Tritonofusus eretaceus, 251. Kröyeri, 251.
Trochosa, 482.
Trochus ægleës, 255.
Ottoi, 254.
rliysus, 255.
V:illanti, 255.
Trophon abyssormm, 421, 447.
var. limicola, 421, 447.
clavaths, $176,268,282,281,421$.
Lintoni, 176, 268.
'Turhonilla areolata, 29-1.
Bushiana, 2ta, 283.
costulata, 294.
limertoni, 272.
grandis, 427, 447.
nivea, 2ヶ2.
perlepida, 127, 4.17.
Rathbuni, $272,283,428$.
T'yphlomangilia nivale, 16.1.
Tameri, 163, 266, 289.

Ulesanis, 7, 28.
americana, 28.
Unsymmetrical Law of Error in the l'osition of a Point in Space, 123-138.
Urosalpinx C'arolinensis, 237, 268.
cinerea, 238.
macra, $239,268$.
Utriculus biplicata, 467.
Velutina lavigata, 269.
Venericardia borealis, 259, 278. granulata, 258, 278, 477.
Novangliæ, 259.
obliqua, 478.
Veums alveata, 477
Terrill, A. E., Second Catalogue of MolInsca recently added to the Fama of the New England Coast and the adjacent parts of the I tlantic, consisting mostly of Deep-Sea Species, with Notes on others previously recorded, 139-294. Third Gatalogne of Mollusca, 395-452.
Terticordia calata, 278.
Vespa, 389.
Tolutella lachrimula, 166, 266, 479.
Volutopsis Norvegicus, 252.
Tolvula, 468.
minnta, 469.
oxytata, 4 (is.
Walckenæra, 45.
bifrons, 46.
diceras, 48.
Waldheimia cranium, 234, 282, 284, 398. tenera, 2:4.
Williston, S. W., Dipterous Larve from
the Western Alkalne Lakes and their use as Iluman Food, 87-90.

North Americau Conopida, $91-98$, 377-394.

Xylophaga dorsalis, 277, 28:3, 285.
Yoldia expansa, 279, 283.
frigida, 279, 284.
hyperborea, 226.
. Feffreysi, 229, 279, 284, 285.
limatula, 226, 279.
lucida, $279,294$.
Messanensis, var., 227, 280. 283, 285.
var. brevirostris, 227.
myalis, 226.
obtusa, 226.
pusio, 227.
regularis, 22S, 279.
sapotilla, 279.
sericea, var. striolata, $226,279,284$.
subequilatera, 229, 279, 284.
thracifornis, 279.
Zilla, 297, 323.
montana, 323.
x-notata, 324.
Zodion, 95, 379, 388, 389, 392
abdominale, 381, 392.
Americanum, 392.
fulvifrons, 380, 392.
leucostoma, 380, 392.
nanellum, 382, 392.
occidensis, 392.
pictulum, 379, 392.
pygmæum, 381, 392
splendens, 392.

ERRATA TO VOL. VI.

Page 27, line 26, for funebre, read funebris.
Page 49 , line 31 , for spinifer, , read spiniferum.
Page s0, lines 29 and 31, for cristatum, read cristata.
Page 85, line 38, for 61 (end of ine), read 51.
Page 86, line 19, Pholcus atlanticus shoukd be omitted.
Page 201, line 1, for Ganeza, read Ganesa.
Page 201, line 3, for Gorgnia read Corgomia.
Page 202 , line 38 , for argentea, read argenteus.
Page 203, line 7, for argentea, read argenteus.
Page 215, line 11, for longicaudatus, read longieautata.
Page 229, line 10, for Jeffreysii, read Jeffreysi.
Page 230, hine 33, for Jeffreysii, read Jeffreysi.
Page 233, line 31, for Geol. read Zool.
Page 257 , line 24 , for R, read C.
Page 261, line 37 , for Emmonds read Emmons.
Page 271, tine 17, for Guneza, real Ganesa.
Page 271, next to last line, for Gadina read Gadiniu.
Page 275, line 20, for Leseur read Lesneur.
Page 276, line 11, for Dumereillii read Dumereilii.
Page 284, line 6, for Jeffreysii, read Jeffreysi.
Pirge 284, line 30, for Seguenizia read Seguenzia.
Page 285, last line, for Ammusium read Amussium.
Page 285, line 27, for Jeffreysit, read Jeffreysi.
lage 289, next to last line, insert comma after Mulletiu.
Page 289, last line, for Pectenide read Pectinidx.
Page 297, line 40, for Micropeira, read Microepeira.
Page 302 , line 38 , for patogiata, read patagiata.
Page 303, line 19 , for patogiata, read patagiuta.
Page 342 , line 9 , for hartorum, read hortorum.
Page 342, line 19, for Micropeira, read Microepeira.
Page 392, line 39, for Occomyia, read Occemyia.
Page 394, line 6, for obliquefasciata, reark obliquofasciata
l'age 451 , line 16 , for dorsal, real ventral.

J. H. Emerton, from Nature.

2ヶ
trudentatoux

$5 a$

*

J. H. Emerton. from Nature

Photo Lith by L S Punderson. New Haven, Conn

LIBINIA EMARGINATA.

TH.Em:erten frominana.

IVEW E'JGLANE MCLIUSSA.

E Grisand Lith New Haver.

[^0]: * The numbers given in this paper are those used in the permanent catalogue of the mollusea, in the National Museum.

[^1]: Trans. Conn. Acad., Vol. VI.

[^2]: * 'This form seems to me essentially identical with M. conoidutis Kiener, of the West Indies. It seems to me probable that both are identical with the fossil M. limatula. M. roscida is probably only a local variety.

[^3]: Tracis. Conn. acad., Vol. VI.
 June, 1854.

[^4]: * Trochus Otloi Philippi, Moll. Sic., vol. ii, p. 227, pl. 28, tig. 9.

[^5]: * Journ. Acal. Nat. Sci. Phil., iv, p. 132, pl. 8, fig. 1, 1824.

[^6]: \ddagger By Mr. Jeffreys this species is identified with A. eccentros Jeff. = Giadinu excentrica Tib., of the Mediterranean. (Proc. Z. Soc. London, 1882, p. 973.)

[^7]: taken for the young of other species on accout of its small size. The colors are however lighter and the rings on the legs narrower and more numerous. The epigymum is nearly as large as that of silvatica and differently shaped. I'l. xxxr, fig. 9. The finger is liable to be broken off.

[^8]: Bepeiru sclopetaria, E. patogiutu and E. strix.
 These three honse spiders resemble each other closely in size, color and habits, and are easily mistaken one for the other. Eif. selopetariu is the most common house

[^9]: Trans. Conn. Acad., Vol. VI,

[^10]: * Chittenden and Griswold, Amer. Chem. Jour., iii, 305. Chittenden and Ely, ibid, iv, 107.
 \dagger Zeitschrift für analytische Chemie, 2? Jahrgang, p. 448.
 \ddagger v. Mering and Musculus, Zeitschrift für physiologische Chemie, i, 395. 0. Sullivan and E. Schultze, Berichte d. deutsch. Chem. Gesell., vii, 1047. Musculus and Gruber, Zeitschrift für physiolog. Chemie, ii, 177. v. Mering, Zeitschrift für physiolog. Chem., v, 196.

[^11]: * Schulze and Märker, Chem. Centralbl. 1872, 823. Chittenden and Fly, Amer. Chem. Jour., iv, 120.
 † Museułus and v. Mering, Zeitschrift für Physiolog. Chem., ii, p. 415.
 \ddagger The starch was exactly neutral; made so lyy long and thorongh washing with pure water. § Loc. cit.
 $\|$ The actual amount of starch changed is, however, somewhat greater than would appear by this efuation, since, as has already been mentioned, considerable of the sugar formed is mathese, which has only two-thirds the reducing power of dextrose.

[^12]: * Pilliger's Archiv der Physiologic, xii, p. 294.

[^13]: * Neutralized saliva.
 \dagger William Roberts: Jahresbericht für Theirchemie, 1881, 290.
 \ddagger To ensure greater accuracy the saliva was diluted ten times and amounts of the diluted fluid added corresponding to the above.

[^14]: * Pflïger's Archiv der Physiologie, xii, p. 297.
 \dagger Chittenden and Ely, Amer. Chom. Jour., iv, 329.
 \ddagger Undoubtedly the alkaline reaction of saliva is due in part to alkaline phosphates, and probathly the porcentages given are only an approximation to the truth.

[^15]: * Chittendeu and EIy, Amer. Chem. Jour. iv, 112.
 \dagger On certain conditions which influence the amylolytic action of saliva. Journal of Physiology, vol. iv, No. 1.

[^16]: * Compare Chittenden and Ely, Amer. Chem. Jour., iv, 329.
 \dagger Chistenden and Ely, Amer. Chew. Jour., iv, 121.
 \ddagger The alkalinity is somewhat greater, owing to the unneutralized alkali of the saliva. Trans. Conn. Acad., Vol. VI.

[^17]: * The standard solutions of sodium carbonate were made from the chemically pure, anhydrous salt.

[^18]: * Journal of I'hysiology, vol. iv, No. 1.

[^19]: * The amount of destruction produced in saliva of this solution by the above percentage of sodium carbonate does not appear to be constant, since we have found in several cases a much greater diastatic action after an hour's warming at $40^{\circ} \mathrm{C}$. than in the above instance, due probably to the larger amount of ptyalin or proteid matter present.
 \dagger Chittenden and Ely, Amer. Chem. Jour., vol. iv, 107.

[^20]: \ddagger Journal of Physiology, vol. iv, No. 1.

[^21]: * Chittenden and Griswold, Amer. Chem. Jour., vol. iii, 305.
 f Irrespective of the proteid matter.
 \ddagger Jourual of Physiology, vol. iii, No. 3.
 § Chittenden and Ely, Amer. Chem. Jour., vol. iv, 114.
 Trans. Conn. Acad., Vol. VI.

[^22]: * Ail of our standard acid solutions were of exactly the strength specified, as was proved by titration with standard solution of silver nitrate.
 \dagger Jahresbericht für Thicreheime, 1881, 269.

[^23]: * Donbtless these percentages of combined acid are too high. since as before mentioned some of the acid added probably roacts with the phosphates naturally present in the saliva.

[^24]: * Centralbl. med. Wiss., 1875, 15.

[^25]: * Chittenden and Griswold, Amer. Chem. Jour., vol. iii, 312.
 † Jour. Chem. Soc., 1879, 543.
 \ddagger Equivalent amounts of standard acid and sodium carbonate solutions, so that A for example might contain the same amount of sodium chloride as B.

[^26]: * To saturate the proteids naturally present in the saliva.

 Trans. Conn. Acad., Vol. VI.
 46
 March, 1885.

[^27]: * Chittenden and Ely, loc. cit.

[^28]: * Chittenden and Griswold, loc. cit.
 \dagger Considered as 0.005 per cent., although we now know the above fignre could not represent free acid, owing to the proteid matter of the saliva,

[^29]: * Chittenden and Griswold, loc. cit.; Chittenden and Ely, loc. cit.: Langley, loc. cit.
 + Amer. Chem. Jour., vol. iv, p. 119.

[^30]: * For the preceding papers on this family see vol. iv, pp. 325-342, and vii, pp. 91-98 (published as separata, pp. 5-12).

[^31]: * Braner, Denkschır. der math.-natur. Classe der kais Acad. d Wissensch., Band xlvii, p. 38, 1883.
 \dagger Braner, l. c., pp. 83, 84.

[^32]: * Number 1 of this series was published in these Transactions, vol. v, pp. 447587, 1882 ; Number 2, in vol. vi, pp. 139-294, 1883.
 \dagger The naturalists associated with the writer in the work, in 1884, were Professor S. I. Smith, Mr. Sanderson Smith, Mr. Richard Rathbun, Professor L. A. Lee, Mr. B. F. Koons, Professor Edwin Linton, Mr. H. L. Brıner, Mr. J. H. Blake (as artist), Mr. J. E. Benedict (naturalist attached to the steamer), Mr. A. Baldwin, IV. E. Safford, Ensign U. S. N., Mr. William Nye, and others. Mr. Peter Parker and R. H. Miner, Ensign U. S. N., worked on the fishes. The parties who went out dredging on the steamer varied from time to time. Usually not more than three or four naturalists besides Mr. Benedict were sent out.
 \ddagger A complete list of these stations, with their location, temperatures, ete., has been published by me in the American Journal of Science, for February, 1885, vol. xxix, p. 154.

[^33]: * The following are some of the special localities where these clay masses were taken:

 Station 2192, in 1060 fathoms, N. lat. $39^{\circ} 46^{\prime} 30^{\prime \prime}$, W. long. $70^{\circ} 14^{\prime} 45^{\prime \prime}$. Large blocks of sandy clay, some weighing about 100 pounds. It was estimated that about a ton was brought up.

 Station 2230, in 1168 fathoms, N. lat. $38^{\circ} 27^{\prime}$, W. long. $73^{\circ} 02^{\prime}$. Large quantity of masses of hard, but sticky greenish blue clay, some masses varying to yellowish and buff colors.

 Station 2171, in 444 fathoms, N. lat. $37^{\circ} 59^{\prime} 30^{\prime \prime}$, W. long. $73^{\circ} 48^{\prime} 40^{\prime \prime}$. Large lumps of bluish gray sandy mud.
 \dagger The following are some of the localities where such materials occurred:
 Station 2208 , in 1178 fathoms, N. lat. $39^{\circ} 33^{\prime}$, W. long. $71^{\circ} 16^{\prime} 15^{\prime \prime}$. Large quantities of hard, crusty ferruginous clay. Also a rounded granite bowlder, weighing over 20 pounds.

 Station 2228 , in 1582 fathoms, N. lat. $37^{\circ} 25^{\prime}$, W. long. $73^{\circ} 06^{\prime}$. Large quantity

[^34]: * The specimen figured has an imperfeet nucleus and is destitute of the epidermis found on porfoctly fresh specimons.

[^35]: Trans. Conn. Adad., Vol. VI.

